Src phosphorylation of micro-receptor is responsible for the receptor switching from an inhibitory to a stimulatory signal

Author(s): Zhang L, Zhao H, Qiu Y, Loh HH, Law PY, et al.

Abstract

Recent studies have revealed that in G protein-coupled receptor signalings switching between G protein- and beta-arrestin (betaArr)-dependent pathways occurs. In the case of opioid receptors, the signal is switched from the initial inhibition of adenylyl cyclase (AC) to an increase in AC activity (AC activation) during prolonged agonist treatment. The mechanism of such AC activation has been suggested to involve the switching of G proteins activated by the receptor, phosphorylation of signaling molecules, or receptor-dependent recruitment of cellular proteins. Using protein kinase inhibitors, dominant negative mutant studies and mouse embryonic fibroblast cells isolated from Src kinase knock-out mice, we demonstrated that mu-opioid receptor (OPRM1)-mediated AC activation requires direct association and activation of Src kinase by lipid raft-located OPRM1. Such Src activation was independent of betaArr as indicated by the ability of OPRM1 to activate Src and AC after prolonged agonist treatment in mouse embryonic fibroblast cells lacking both betaArr-1 and -2. Instead the switching of OPRM1 signals was dependent on the heterotrimeric G protein, specifically Gi2 alpha-subunit. Among the Src kinase substrates, OPRM1 was phosphorylated at Tyr336 within NPXXY motif by Src during AC activation. Mutation of this Tyr residue, together with mutation of Tyr166 within the DRY motif to Phe, resulted in the complete blunting of AC activation. Thus, the recruitment and activation of Src kinase by OPRM1 during chronic agonist treatment, which eventually results in the receptor tyrosine phosphorylation, is the key for switching the opioid receptor signals from its initial AC inhibition to subsequent AC activation.

Similar Articles

Enhanced morphine analgesia in mice lacking beta-arrestin 2

Author(s): Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, et al.

Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence

Author(s): Bohn LM, Gainetdinov RR, Lin FT, Lefkowitz RJ, Caron MG, et al.

Ligand-directed signalling within the opioid receptor family

Author(s): Pradhan AA, Smith ML, Kieffer BL, Evans CJ

μ-opioid receptors: correlation of agonist efficacy for signalling with ability to activate internalization

Author(s): McPherson J, Rivero G, Baptist M, Llorente J, Al-Sabah S, et al.

Morphine-like opiates selectively antagonize receptor-arrestin interactions

Author(s): Molinari P, Vezzi V, Sbraccia M, Grò C, Riitano D, et al.

Pharmacological characterization of AR-M1000390 at human delta opioid receptors

Author(s): Marie N, Landemore G, Debout C, Jauzac P, Allouche S

SK-N-BE: a human neuroblastoma cell line containing two subtypes of delta-opioid receptors

Author(s): Polastron J, Mur M, Mazarguil H, Puget A, Meunier JC, et al.

ßarrestin1-biased agonism at human δ-opioid receptor by peptidic and alkaloid ligands

Author(s): Aguila B, Coulbault L, Davis A, Marie N, Hasbi A, et al.

Molecular control of δ-opioid receptor signalling

Author(s): Fenalti G, Giguere PM, Katritch V, Huang XP, Thompson AA, et al.

Development and validation of a genetic algorithm for flexible docking

Author(s): Jones G, Willett P, Glen RC, Leach AR, Taylor R, et al.

Agonist-selective mechanisms of GPCR desensitization

Author(s): Kelly E, Bailey CP, Henderson G

Recovery from mu-opioid receptor desensitization after chronic treatment with morphine and methadone

Author(s): Quillinan N, Lau EK, Virk M, von Zastrow M, Williams JT

Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes

Author(s): Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, et al.