Author(s): Turchan J, Przewlocka B, Toth G, LasonW, Borsodi A, et al.
The present study was carried out to evaluate the effect of morphine, cocaine and ethanol on the density of opioid receptors in the nucleus accumbens and striatum of rat brain. The animals were injected i.p. with morphine in a single dose 20 mg/kg, or twice daily for 10 days in increasing doses of 20-100 mg/kg. Cocaine was administered in a dose of 60 mg/kg/day following the "binge" paradigm, every hour for 3 h, one day (single treatment) or five days (chronic treatment). Ethanol was administered in drinking water at increasing concentrations of 1-6% v/v, for one month. As shown by receptor autoradiography, single morphine and cocaine administration did not influence the binding density of the selective ligand of delta2 receptors [3H]Ile5,6deltorphin b, but single administration of cocaine decreased binding density of a highly selective antagonist of delta receptors, [3H]H-Tyr-Tic psi[CH2-NH]Phe-Phe-OH. Repeated morphine administration decreased the receptor density after both ligands of the delta receptor in the nucleus accumbens after 3, 24 and 48 h, and in the striatum after 24 and 48 h. The density of [3H]Ile5,6deltorphin b binding remained unchanged in both structures following repeated cocaine administration. After repeated cocaine administration either no changes (3 h) or a decrease in the binding of [3H]H-Tyr-Tic psi[CH2-NH]Phe-Phe-OH in the nucleus accumbens and striatum were observed after 24 and 48 h. Ethanol did not influence the binding density of [3H]H-Tyr-Tic psi[CH2-NH]Phe-Phe-OH and [3H]Ile5,6deltorphin b in the nucleus accumbens and striatum at any time-point studied. In the nucleus accumbens and striatum, no changes were found in the binding density of [3H]Tyr-D-Ala-Gly-MePhe-Gly-ol following single or repeated morphine administration. At 3 h after single or repeated "binge" cocaine administration, the binding of [3H]Tyr-D-Ala-Gly-MePhe-Gly-ol was not changed in either structure, but after 24 h the density of mu opioid receptors was decreased in both structures. Ethanol given to rats in drinking water decreased the binding of [3H]Tyr-D-Ala-Gly-MePhe-Gly-ol at the time of exposure to ethanol, yet in the nucleus accumbens only. Ethanol withdrawal decreased the density of the mu receptor in both structures after 24, 48 and 96 h. The above data indicate that repeated administration of morphine evokes a long-lasting down-regulation of the density of delta1 and delta2 opioid receptors, whereas cocaine affects in a similar way only the delta1 subtype in the nucleus accumbens, and to a lesser extent in the striatum. A long-term intake of ethanol solution down-regulates mu opioid receptors in both structures, but has no effect on any type of delta receptors. Thus changes in the particular opioid receptor depend on the type of drug used. Furthermore, the most profound changes are observed after late withdrawal, which may play some role in maintaining the state of dependence.
Referred From: https://www.ncbi.nlm.nih.gov/pubmed/10391475
Author(s): Allouche S, Noble F, Marie N
Author(s): Schmid CL, Bohn LM
Author(s): Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, et al.
Author(s): Bohn LM, Gainetdinov RR, Lin FT, Lefkowitz RJ, Caron MG, et al.
Author(s): Shenoy SK, Lefkowitz RJ
Author(s): Pradhan AA, Smith ML, Kieffer BL, Evans CJ
Author(s): McPherson J, Rivero G, Baptist M, Llorente J, Al-Sabah S, et al.
Author(s): Molinari P, Vezzi V, Sbraccia M, Grò C, Riitano D, et al.
Author(s): Zastrow von M, Keith DE, Evans CJ
Author(s): Keith DE, Anton B, Murray SR, Zaki PA, Chu PC, et al.
Author(s): Allouche S, Roussel M, Marie N, Jauzac P
Author(s): Marie N, Landemore G, Debout C, Jauzac P, Allouche S
Author(s): Lecoq I, Marie N, Jauzac P, Allouche S
Author(s): Polastron J, Mur M, Mazarguil H, Puget A, Meunier JC, et al.
Author(s): Allouche S, Hasbi A, Ferey V, Sola B, Jauzac P, et al.
Author(s): Aguila B, Roussel M, Jauzac P, Allouche S
Author(s): Aguila B, Coulbault L, Davis A, Marie N, Hasbi A, et al.
Author(s): Marie N, Lecoq I, Jauzac P, Allouche S
Author(s): Aguila B, Coulbault L, Boulouard M, Léveillé F, Davis A, et al.
Author(s): Fenalti G, Giguere PM, Katritch V, Huang XP, Thompson AA, et al.
Author(s): Jones G, Willett P, Glen RC, Leach AR, Taylor R, et al.
Author(s): Melief EJ, Miyatake M, Bruchas MR, Chavkin C
Author(s): Chu J, Zheng H, Loh HH, Law PY
Author(s): Dang VC, Napier IA, Christie MJ
Author(s): Wang Q, Liu-Chen LY, Traynor JR
Author(s): Marie N, Aguila B, Hasbi A, Davis A, Jauzac P, et al.
Author(s): Pan L, Gurevich EV, Gurevich VV
Author(s): Connor M, Osborne PB, Christie MJ
Author(s): Zhang X, Wang F, Chen X, Li J, Xiang B, et al.
Author(s): Qiu Y, Loh HH, Law PY
Author(s): Cen B, Xiong Y, Ma L, Pei G
Author(s): Tao PL, Law PY, Loh HH
Author(s): Hasbi A, Allouche S, Sichel F, Stanasila L, Massotte D, et al.
Author(s): Kelly E, Bailey CP, Henderson G
Author(s): Qiu Y, Law PY, Loh HH
Author(s): Quillinan N, Lau EK, Virk M, von Zastrow M, Williams JT
Author(s): Zhang L, Zhao H, Qiu Y, Loh HH, Law PY, et al.
Author(s): Zhang L, Loh HH, Law PY
Author(s): Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, et al.
Author(s): Filizola M, Laakkonen L, Loew GH