Trolox ameliorates 3-nitropropionic acid-induced neurotoxicity in rats

Author(s): Al Mutairy A, Al Kadasah S, Elfaki I,Arshaduddin M, Malik D, et al.

Abstract

Mechanisms underlying the selective vulnerability of the lateral striatal area to the toxic effects of 3-nitropropionic acid (3-NPA) were investigated in rats. A single exposure to 3-NPA (20 mg/kg, s.c.) induced no deficits in behavior and histology, but subsequent injection produced motor symptoms, catalepsy, lip smacking, abnormal gait, paddling, rolling, opisthotonos, tremor, recombence, somnolence and so on, in 30% of the animals within a few hours. Diffusion-weighted magnetic resonance imaging of the brains revealed an area of high signal intensity in the bilateral striata. By this stage (within a few hours), striatal astrocytes had become swollen and disintegrated. Extravasation of immunoglobulin G was detected, indicating blood-brain barrier (BBB) dysfunction. Electron microscopy revealed edema and disorganization of structures inside the astrocytic end-feet around the branches of the lateral striatal artery. Neurons were less vulnerable than astrocytes to the 3-NPA injury. Treatment of the rats with D2 receptor agonist prior to exposure to 3-NPA attenuated the behavioral abnormalities and histological damage whereas pretreatment with D2 antagonist exacerbated these changes. The concentrations of extracellular dopamine (DA) and dihydroxyphenyl acetic acid (DOPAC) were both increased in rats exposed to 3-NPA. In vitro imaging of astrocytes revealed a progressive increase in [Ca2+]i after superfusion with 3-NPA, and the `ceiling' level was maintained even after extensive washing. DA superfusion also increased the astrocytic [Ca2+]i and this increase was reversible. Data indicate that 3-NPA-induced striatal damage was associated with astrocytic cell death and dysfunction of the BBB. Intracellular edema and extreme Ca2+ overload induced by the toxin were further aggravated by an increase in the level of DA activity. These factors acting either singly or in combination may trigger astrocyte destruction.

Similar Articles

Fish Oil Feeding Up-Regulates the Expression of 5-Aminolevulinate Synthase 2 mRNA in Rat Brain

Author(s): Haraguchi T, Yanaka N, Eguchi Y, Kudo T, Hirata A, et al.

Korean red ginseng ameliorates acute 3-nitropropionic acid-induced cochlear damage in mice

Author(s): Tian C, Kim YH, Kim YC, Park KT, Kim SW, et al.

Docosahexaenoic acid withstands the Aβ(25-35)-induced neurotoxicity in SH-SY5Y cells

Author(s): Hashimoto M, Katakura M, Hossain S, Rahman A, Shimada T, et al.

Determination of carbonyl content in oxidatively modified proteins

Author(s): Levine RL, Garland D, Oliver CN, Amici A, Climent I, et al.

Catalase in vitro

Author(s): Aebi H

Glutathione transferase from rat testis

Author(s): Guthenberg C, Alin P, Mannervik B

Assays of glutathione peroxidase

Author(s): Flohé L, Günzler WA

A new and rapid colorimetric determination of acetylcholinesterase activity

Author(s): Ellman GL, Courtney KD, Andres V, Feather-Stone RM

Molecular mechanism involved in the transport of a prodrug dopamine glycosyl conjugate

Author(s): Dalpiaz A, Filosa R, de Caprariis P, Conte G, BortolottiF, et al.

Biochemistry of dystrophic muscle

Author(s): Pennington RJ

Protein measurement with the Folin phenol reagent

Author(s): Lowry OH, Rosebrough NJ, Farr AL, Randall RJ

Pro- and antioxidant activities of docosahexaenoic acid on human blood platelets

Author(s): Véricel E, Polette A, Bacot S, Calzada C, Lagarde M, et al.

Proteins as biomarkers of oxidative/nitrosative stress in diseases: the contribution of redox proteomics

Author(s): Dalle-Donne I, Scaloni A, Giustarini D,Cavarra E, Tell G, et al.

Protein oxidation and aging

Author(s): Stadtman ER

Reduced protein oxidation in Wistar rats supplemented with marine ω3 PUFAs

Author(s): Méndez L, Pazos M, Gallardo JM, Torres JL, Pérez-JiménezJ, et al.

Involvement of nitric oxide in 3-nitropropionic acid-induced striatal toxicity in rats

Author(s): Deshpande SB, Hida H, Takei-Io N, Masuda T, Baba H, et al.

Glutathione synthesis

Author(s): Lu SC

Cholinergic neuronal defect without cell loss in Huntington’s disease

Author(s): Smith R, Chung H, Rundquist S, Maat-Schieman ML, Colgan L, et al.