Two distinct mechanisms mediate acute mu-opioid receptor desensitization in native neurons

Author(s): Dang VC, Napier IA, Christie MJ

Abstract

Sustained stimulation of G-protein coupled receptors (GPCRs) leads to rapid loss of receptor function (acute desensitization). For many GPCRs including the mu-opioid receptor (MOR), an accepted mechanism for acute desensitization is through G-protein coupled receptor kinase (GRKs) mediated phosphorylation of the receptor, which facilitates the binding of beta-arrestins (betaarrs) to the receptor and then promotes endocytosis. However, the mechanism(s) that mediate acute desensitization have not yet been well defined in native neurons. This study used whole-cell patch clamp recording of G-protein coupled inward-rectifying potassium (GIRK) currents to assay MOR function and identify mechanisms of acute MOR desensitization in locus ceruleus (LC) neurons. The rate and extent of MOR desensitization were unaffected by beta(arr)-2 knock-out. Disruption of GRK2 function via inhibitory peptide introduced directly into neurons also failed to affect desensitization in wild type or beta(arr)-2 knock-outs. Inhibition of ERK1/2 activation alone had little effect on acute desensitization. However, when both GRK2-beta(arr)-2 and ERK1/2 functions were disrupted simultaneously, desensitization of MOR was nearly abolished. Together, these results suggest that acute desensitization of MOR in native LC neurons is determined by at least two molecular pathways, one involving GRK2 and beta(arr)2, and a parallel pathway mediated by activated ERK1/2.

Similar Articles

Enhanced morphine analgesia in mice lacking beta-arrestin 2

Author(s): Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, et al.

Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence

Author(s): Bohn LM, Gainetdinov RR, Lin FT, Lefkowitz RJ, Caron MG, et al.

Ligand-directed signalling within the opioid receptor family

Author(s): Pradhan AA, Smith ML, Kieffer BL, Evans CJ

μ-opioid receptors: correlation of agonist efficacy for signalling with ability to activate internalization

Author(s): McPherson J, Rivero G, Baptist M, Llorente J, Al-Sabah S, et al.

Morphine-like opiates selectively antagonize receptor-arrestin interactions

Author(s): Molinari P, Vezzi V, Sbraccia M, Grò C, Riitano D, et al.

Pharmacological characterization of AR-M1000390 at human delta opioid receptors

Author(s): Marie N, Landemore G, Debout C, Jauzac P, Allouche S

SK-N-BE: a human neuroblastoma cell line containing two subtypes of delta-opioid receptors

Author(s): Polastron J, Mur M, Mazarguil H, Puget A, Meunier JC, et al.

ßarrestin1-biased agonism at human δ-opioid receptor by peptidic and alkaloid ligands

Author(s): Aguila B, Coulbault L, Davis A, Marie N, Hasbi A, et al.

Molecular control of δ-opioid receptor signalling

Author(s): Fenalti G, Giguere PM, Katritch V, Huang XP, Thompson AA, et al.

Development and validation of a genetic algorithm for flexible docking

Author(s): Jones G, Willett P, Glen RC, Leach AR, Taylor R, et al.

Agonist-selective mechanisms of GPCR desensitization

Author(s): Kelly E, Bailey CP, Henderson G

Recovery from mu-opioid receptor desensitization after chronic treatment with morphine and methadone

Author(s): Quillinan N, Lau EK, Virk M, von Zastrow M, Williams JT

Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes

Author(s): Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, et al.