Recommended Conferences

International Conference on Climate Change Global Warming

Berlin, Germany
Related Subjects

Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy

Author(s): Coble PG


High-resolution fluorescence spectroscopy was used to characterize dissolved organic matter (DOM) in concentrated and unconcentrated water samples from a wide variety of freshwater, coastal and marine environments. Several types of fluorescent signals were observed, including humic-like, tyrosine-like, and tryptophan-like. Humic-like fluorescence consisted of two peaks, one stimulated by UV excitation (peak A) and one by visible excitation (peak C). For all samples, the positions of both excitation and emission maxima for peak C were dependent upon wavelength of observation, with a shift towards longer wavelength emission maximum at longer excitation wavelength and longer wavelength excitation maximum at longer emission wavelength. A trend was observed in the position of wavelength-independent maximum fluorescence (ExmaxEmmax) for peak C, with maximum at shorter excitation and emission wavelengths for marine samples than for freshwater samples. Mean positions of these maxima were: rivers ExmaxEmmax = 340448 nm; coastal water ExmaxEmmax = 342442 nm; marine shallow transitional ExmaxEmmax = 310423 nm; marine shallow eutrophic ExmaxEmmax = 299389 nm; and marine deep ExmaxEmmax = 340438 nm. Differences suggest that the humic material in marine surface waters is chemically different from humic material in the other environments sampled. These results explain previous conflicting reports regarding fluorescence properties of DOM from natural waters and also provide a means of distinguishing between water mass sources in the ocean.

Similar Articles

Estimating global "blue carbon" emissions from conversion and degradation of vegetated coastal ecosystems

Author(s): Pendleton L, Donato DC, Murray BC, Crooks S, Jenkins WA, et al.

Major role of marine vegetation on the oceanic carbon cycle

Author(s): Duarte CM, Middelburg JJ, Caraco N

Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows

Author(s): Duarte CM, Marbà N, Gacia E, Fourqurean JW, Beggins J, et al.

Seagrass sediments as a global carbon sink: Isotopic constraints

Author(s): Kennedy H, Beggins J, Duarte CM, Fourqurean JW, Holmer M, et al.

Distribution of Terrestrially Derived Dissolved Organic Matter on the Southeastern U

Author(s): Moran MA, Pomeroy LR, Sheppard ES, Atkinson LP, Hodson RE

Fluorescence spectroscopy and multi-way techniques

Author(s): Murphy KR, Stedmon CA, Graeber D, Bro R