Recommended Conferences

International Conference on Climate Change Global Warming

Berlin, Germany
Related Subjects
 

Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing

Author(s): Baun A, Hartmann NB, Grieger K, Kusk KO

Abstract

Based on a literature review and an overview of toxic effects of engineered nanoparticles in aquatic invertebrates, this paper proposes a number of recommendations for the developing field of nanoecotoxicology by highlighting the importance of invertebrates as sensitive and relevant test organisms. Results show that there is a pronounced lack of data in this field (less than 20 peer-reviewed papers are published so far), and the most frequently tested engineered nanoparticles in invertebrate tests are C60, carbon nanotubes, and titanium dioxide. In addition, the majority of the studies have used Daphnia magna as the test organism. To date, the limited number of studies has indicated acute toxicity in the low mgl−1 range and higher of engineered nanoparticles to aquatic invertebrates, although some indications of chronic toxicity and behavioral changes have also been described at concentrations in the high μgl−1 range. Nanoparticles have also been found to act as contaminant carriers of co-existing contaminants and this interaction has altered the toxicity of specific chemicals towards D. magna. We recommend that invertebrate testing is used to advance the level of knowledge in nanoecotoxicology through standardized short-term (lethality) tests with invertebrates as a basis for investigating behaviour and bioavailability of engineered nanoparticles in the aquatic environment. Based on this literature review, we further recommend that research is directed towards invertebrate tests employing long-term low exposure with chronic endpoints along with more research in bioaccumulation of engineered nanoparticles in aquatic invertebrates.

Similar Articles

Evaluation of carbon nanotubes network toxicity in zebrafish (Danio rerio) model

Author(s): Filho JDS, Matsubara EY, Franchi LP, Martins IP, Rivera LMR, et al.

Metal-based nanoparticles and their toxicity assessment

Author(s): Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, et al.

Advancing risk assessment of engineered nanomaterials: application of computational approaches

Author(s): Gajewicz A, Rasulev B, Dinadayalane TC, Urbaszek P, Puzyn T, et al.

Histopathological alterations in the gills of Nile tilapia exposed to carbofuran and multiwalled carbon nanotubes

Author(s): Campos-Garcia J, Martinez DT, Rezende KF, da Silva JR, Alves OL, et al.

Histopathological effects on gills of Nile Tilapia (Oreochromis niloticus, Linnaeus, 1758) exposed to Pb and Carbon nanotubes

Author(s): Barbieri E, Campos-Garcia J, Martinez ST, da Silva JR, Alves OL, et al.

Evaluation of multiwalled carbon nanotubes toxicity in two fish species

Author(s): Cimbaluk GV, Ramsdorf WA, Perussolo MC, Santos HKF, Da Silva, et al.

Cerium oxide nanoparticles are more toxic than equimolar bulk cerium oxide in Caenorhabditis elegans

Author(s): Arnold MC, Badireddy AR, Wiesner MR, Di Giulio RT, Meyer JN