Recommended Conferences

International Conference on Climate Change Global Warming

Berlin, Germany
Related Subjects

Glutathione peroxidase and catalase modulate the genotoxicity of arsenic

Author(s): Wang TS, Shu YF, Liu YC, Jan KY, Huang H


The X-ray hypersensitive Chinese hamster ovary (CHO) cells, xrs-5, are also more sensitive to sodium arsenite in terms of cell growth and micronucleus induction than CHO-K1 cells. Since reactive oxygen species are suggested to be involved in arsenic toxicity, we have measured antioxidant mechanisms in xrs-5 as well as CHO-K1 cells. There were no apparent differences in the activities of superoxide dismutase, glutathione S-transferase, glutathione reductase, and the levels of glutathione between xrs-5 and CHO-K1 cells. However, the activities of glutathione peroxidase and catalase were 5.4- and 5.8-fold lower, respectively, in xrs-5 cells. The addition of catalase or glutathione peroxidase to cultures reduced the arsenite-induced micronuclei in xrs-5 cells. Whereas, simultaneous treatment with mercaptosuccinate, an inhibitor of glutathione peroxidase, and 3-aminotriazole, an inhibitor of catalase, synergistically increased the arsenite-induced micronuclei. These results suggest that both catalase and glutathione peroxidase are involved in defense against arsenite genotoxicity. The xrs-6 cells, another line of x-ray hypersensitive CHO cells, which had 1.6-fold higher catatase activity and 2.5-fold higher glutathione peroxidase activity than xrs-5 cells, were also more sensitive than CHO-K1 cells but were less sensitive than xrs-5 cells to cell growth inhibition of arsenite. Moreover, a 1.6-fold increase of glutathione peroxidase activity by selenite adaptation effectively removed the arsenite-induced micronuclei in CHO-K1 cells. These results suggest that glutathione peroxidase is more important than catalase in defending against arsenite toxicity. Our results also suggest that increasing the intracellular antioxidant level may have preventive or therapeutic effects in arsenic poisoning.

Similar Articles

Molluscs in biological monitoring of water quality

Author(s): Salánki J, Farkas A, Kamardina T, Rózsa KS

Metal Contamination in Aquatic Environments

Author(s): Luoma SN, Rainbow PS

Molluscs as multidisciplinary models in environmental toxicology

Author(s): Rittschof D, McClellan-Green P

Response of Mytilus galloprovincialis (L

Author(s): Anestis A, Pörtner HO, Karagiannis D, Angelidis P, Staikou A, et al.

Integrated use of biomarkers (superoxide dismutase, catalase and lipid peroxidation)

Author(s): Vlahogianni TM, Dassenakis M, Scoullos J, Valavanidis A

Monitoring the biochemical and cellular responses of marine bivalves during thermal stress by using biomarkers

Author(s): Dimitriadis VK, Gougoula C, Anestis A, Pörtner HO, Michaelidis B

Biomarker responses of mussels exposed to earthquake disturbances

Author(s): Chandurvelan R, Marsden ID, Glover CN, Gaw S

Aquat Toxicol 142-143: 283-293

Author(s): Chandurvelan R, Marsden ID, Gaw S, Glover CN (2013 b) Waterborne cadmium impacts immunocytotoxic and cytogenotoxic endpoints in green-lipped mussel, Perna canaliculus

Metals, toxicity and oxidative stress

Author(s): Valko M, Morris H, Cronin MTD

Spatial and temporary trends on contaminants in mussel sampled around the Icelandic coastline

Author(s): Sturludottir E, Gunnlaugsdottir H, Jorundsdottir HO, Magnusdottir EV, Olafsdottir K, et al.

Heavy metals and glutathione metabolism in mussel tissues

Author(s): Canesi L, Viarengo A, Leonzio C, Filippelli M, Gallo G