Related Subjects

Integrated use of biomarkers (superoxide dismutase, catalase and lipid peroxidation)

Author(s): Vlahogianni TM, Dassenakis M, Scoullos J, Valavanidis A


Mussels are used as sentinel organisms and bioindicators to evaluate the toxic effects of chemical pollutants in marine organisms, especially heavy metals, representing an important tool for biomonitoring environmental pollution in coastal areas. Antioxidant defence enzymes play an important role in cellular antioxidant defence systems and protect from oxidative damage by reactive oxygen species (ROS). Indigenous mussels Mytilus galloprovincialis of the Saronikos Gulf of Greece were used for monitoring heavy metal pollution in three polluted sites in the area and in one unpolluted site. Seasonal variations of the activity of antioxidant defence enzymes, superoxide dismutase (SOD) and catalase (CAT), as well as lipid peroxidation (LP) were measured as biomarkers in a period of three years in relation to concentrations of trace metals in their gills and mantle and compared to mussels from an unpolluted sampling site. SOD activity increased at least 2 fold at the polluted sites when compared to the control site (the high activity was recorded in the spring time). CAT activity was increased 2–3 times at the polluted sites, with high activity in the winter and spring time, compared to the control site. LP concentration was twice higher at the polluted sites, following the same seasonal pattern. Trace metals contents in mussels collected at polluted sites were 3–4 fold higher compared to the control site and showed moderate variations along the months, with a winter maximum followed by a summer pre-spawning minimum matching the seasonal trends of temperature and salinity. Our results showed that metal pollution in the Elefsis Bay (the most polluted coastal area) causes relatively medium levels of oxidative stress in tissues of mussels due to cellular oxy-radical generation. This study, which is the first in the area, showed that seasonal variations of the activity of antioxidant defence enzymes and LP concentrations in mussels can be used as potential biomarkers of toxicity for long-term monitoring in marine coastal ecosystems.

Similar Articles

Molluscs in biological monitoring of water quality

Author(s): Salánki J, Farkas A, Kamardina T, Rózsa KS

Metal Contamination in Aquatic Environments

Author(s): Luoma SN, Rainbow PS

Molluscs as multidisciplinary models in environmental toxicology

Author(s): Rittschof D, McClellan-Green P

Response of Mytilus galloprovincialis (L

Author(s): Anestis A, Pörtner HO, Karagiannis D, Angelidis P, Staikou A, et al.

Monitoring the biochemical and cellular responses of marine bivalves during thermal stress by using biomarkers

Author(s): Dimitriadis VK, Gougoula C, Anestis A, Pörtner HO, Michaelidis B

Biomarker responses of mussels exposed to earthquake disturbances

Author(s): Chandurvelan R, Marsden ID, Glover CN, Gaw S

Aquat Toxicol 142-143: 283-293

Author(s): Chandurvelan R, Marsden ID, Gaw S, Glover CN (2013 b) Waterborne cadmium impacts immunocytotoxic and cytogenotoxic endpoints in green-lipped mussel, Perna canaliculus

Metals, toxicity and oxidative stress

Author(s): Valko M, Morris H, Cronin MTD

Spatial and temporary trends on contaminants in mussel sampled around the Icelandic coastline

Author(s): Sturludottir E, Gunnlaugsdottir H, Jorundsdottir HO, Magnusdottir EV, Olafsdottir K, et al.

Glutathione peroxidase and catalase modulate the genotoxicity of arsenic

Author(s): Wang TS, Shu YF, Liu YC, Jan KY, Huang H

Heavy metals and glutathione metabolism in mussel tissues

Author(s): Canesi L, Viarengo A, Leonzio C, Filippelli M, Gallo G