Recommended Conferences

2nd International Conference on Clinical Psychiatry

Miami, USA

Neuroscience Psychiatry

Dubai, UAE

Psychology and Mental Health

Chicago, USA
Related Subjects

Caffeine protects against oxidative stress and Alzheimer's disease-like pathology in rabbit hippocampus induced by cholesterol-enriched diet

Author(s): Prasanthi JR, Dasari B, Marwarha G


Cholesterol has been linked to the pathogenesis of sporadic Alzheimer's disease (AD) as a risk factor increasing β-amyloid (Aβ) and oxidative stress levels. Caffeine has antioxidant properties and has been demonstrated to reduce Aβ levels in transgenic mouse models of familial AD. However, the effects of caffeine on cholesterol-induced sporadic AD pathology have not been determined. In this study, we determined the effects of caffeine on Aβ levels, tau phosphorylation, oxidative stress generation, and caffeine-target receptors in rabbits fed a 2% cholesterol-enriched diet, a model system for sporadic AD. Our results showed that the cholesterol-enriched diet increased levels of Aβ, tau phosphorylation, and oxidative stress measured as increased levels of reactive oxygen species and isoprostanes, glutathione depletion, and increased levels of endoplasmic reticulum stress marker proteins. Additionally, the cholesterol-enriched diet reduced the levels of adenosine A1 receptors (A1R) but not ryanodine or adenosine A2A receptors. Caffeine, administered at 0.5 and 30 mg/day in the drinking water, reduced the cholesterol-induced increase in Aβ, phosphorylated tau, and oxidative stress levels and reversed the cholesterol-induced decrease in A1R levels. Our results suggest that even very low doses of caffeine might protect against sporadic AD-like pathology.

Similar Articles

The impact of coffee on health

Author(s): Cano-Marquina A, Tarín JJ, Cano A

Tolerance to the humoral and hemodynamic effects of caffeine in man

Author(s): Robertson D, Wade D, Workman R, Woosley RL, Oateshttp JA

Caffeine consumption

Author(s): Barone JJ, Roberts HR

Neuropsychiatric effects of caffeine

Author(s): Winston AP, Hardwick E, Jaberi N

Caffeine fatalities – four case reports

Author(s): Holmgren P, Nordén-Pettersson L, Ahlner J

Caffeine metabolism in patients with chronic liver disease

Author(s): Rodopoulos N, Wisén O, Norman A

Assessment of risk involved in the combination medicine of paracetamol and caffeine

Author(s): Uddin MS, Wali MW, Mamun AA, Asaduzzaman M, Amran MS, et al.

Caffeine for the sustainment of mental task performance: Formulations for military operations

Author(s): Vanderveen JE, Armstrong LE, Butterfield GE, Chenoweth WL, Dwyer JT, et al.

Effect of smoking on caffeine clearance

Author(s): Parsons WD, Neims AH

Pharmacokinetic profile of caffeine in the premature newborn infant with apnea

Author(s): Aranda JV, Cook CE, Gorman W, Collinge JM, Loughnan PM, et al.

Pharmacokinetic aspects of theophylline in premature newborns

Author(s): Aranda JV, Sitar DS, Parsons WD, Loughnan PM, Neims AH

Cytochrome P450-dependent metabolism of caffeine in Drosophila melanogaster

Author(s): Coelho A, Fraichard S, Le Goff G, Faure P, Artur Y, Ferveur JF, Heydel JM

Effects of caffeine on visual monitoring

Author(s): Baker WJ, Theologus GC

Seizures and epilepsy after ischemic stroke

Author(s): Camilo O, Goldstein LB

Crude caffeine reduces memory impairment and amyloid ß(1-42) levels in an Alzheimer's mouse model

Author(s): Chu YF, Chang WH, Black RM, Liu JR, Sompol P, et al.