Differential glutamate-dependent and glutamate-independent adenosine A1 receptor-mediated modulation of dopamine release in different striatal compartments

Author(s): Borycz J, Pereira MF, Melani A, Rodrigues RJ, Kofalvi A, et al.


Adenosine and dopamine are two important modulators of glutamatergic neurotransmission in the striatum. However, conflicting reports exist about the role of adenosine and adenosine receptors in the modulation of striatal dopamine release. It has been previously suggested that adenosine A1 receptors localized in glutamatergic nerve terminals indirectly modulate dopamine release, by their ability to modulate glutamate release. In the present study, using in vivo microdialysis, we provide evidence for the existence of a significant glutamate-independent tonic modulation of dopamine release in most of the analyzed striatal compartments. In the dorsal, but not in the ventral, part of the shell of the nucleus accumbens (NAc), blockade of A1 receptors by local perfusion with the selective A1 receptor antagonist 8-cyclopentyl-1,3-dimethyl-xanthine or by systemic administration of the non-selective adenosine antagonist caffeine induced a glutamate-dependent release of dopamine. On the contrary, A1 receptor blockade induced a glutamate-independent dopamine release in the core of the NAc and the nucleus caudate–putamen. Furthermore, using immunocytochemical and functional studies in rat striatal synaptosomes, we demonstrate that a fraction of striatal dopaminergic terminals contains adenosine A1 receptors, which directly inhibit dopamine release independently of glutamatergic transmission.

Similar Articles

The impact of coffee on health

Author(s): Cano-Marquina A, Tarín JJ, Cano A

Tolerance to the humoral and hemodynamic effects of caffeine in man

Author(s): Robertson D, Wade D, Workman R, Woosley RL, Oateshttp JA

Caffeine consumption

Author(s): Barone JJ, Roberts HR

Neuropsychiatric effects of caffeine

Author(s): Winston AP, Hardwick E, Jaberi N

Caffeine fatalities – four case reports

Author(s): Holmgren P, Nordén-Pettersson L, Ahlner J

Caffeine metabolism in patients with chronic liver disease

Author(s): Rodopoulos N, Wisén O, Norman A

Assessment of risk involved in the combination medicine of paracetamol and caffeine

Author(s): Uddin MS, Wali MW, Mamun AA, Asaduzzaman M, Amran MS, et al.

Caffeine for the sustainment of mental task performance: Formulations for military operations

Author(s): Vanderveen JE, Armstrong LE, Butterfield GE, Chenoweth WL, Dwyer JT, et al.

Effect of smoking on caffeine clearance

Author(s): Parsons WD, Neims AH

Pharmacokinetic profile of caffeine in the premature newborn infant with apnea

Author(s): Aranda JV, Cook CE, Gorman W, Collinge JM, Loughnan PM, et al.

Pharmacokinetic aspects of theophylline in premature newborns

Author(s): Aranda JV, Sitar DS, Parsons WD, Loughnan PM, Neims AH

Cytochrome P450-dependent metabolism of caffeine in Drosophila melanogaster

Author(s): Coelho A, Fraichard S, Le Goff G, Faure P, Artur Y, Ferveur JF, Heydel JM

Effects of caffeine on visual monitoring

Author(s): Baker WJ, Theologus GC

Seizures and epilepsy after ischemic stroke

Author(s): Camilo O, Goldstein LB

Crude caffeine reduces memory impairment and amyloid ß(1-42) levels in an Alzheimer's mouse model

Author(s): Chu YF, Chang WH, Black RM, Liu JR, Sompol P, et al.