A simple modification of the separation method reduces heterogeneity of adipose-derived stem cells

Author(s): Griesche N, Luttmann W, Luttmann A, Stammermann T, Geiger H, et al.

Abstract

High hopes are put into the use of mesenchymal stem cells (MSCs) in various approaches for tissue engineering and regenerative medicine. MSCs are derived from different tissues with only small differences in their phenotype or their differentiation potential, but higher differences in the cell yield. Since fat is easily accessible and contains a high amount of MSCs to be isolated, adipose-derived stem cells (ASCs) are very promising for clinical approaches. ASCs are not a completely homogeneous cell population. Our study was initiated to explore an easy and convenient method to reduce heterogeneity. We tested different isolation methods: (1) the standard isolation method for ASCs based on plastic attachment, (2) the standard method with an initial washing step after 60 min of adherence and (3) immunomagnetic isolation by 4 typical markers (CD49a, CD90, CD105 and CD271). Cells isolated by these methods were evaluated using quantitative PCR and flow cytometry as well as by their differentiation potential. Washing led to a significantly lower expression of desmin, smA and six2, and a higher expression of the stem cell markers nestin, oct-4 and sall-1, compared to standard isolated cells, while the immunomagnetically isolated cells showed no significant changes. All cells independent of the isolation method could be induced to differentiate into adipocytes and osteoblasts. Our study demonstrates that a simple washing step reduces heterogeneity of cultured ASCs according to PCR analysis, whereas the immunomagnetic isolation only showed minor advantages compared to the standard method, but the disadvantage of significantly lower cell yields in the primary isolates.

Similar Articles

Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis

Author(s): Riordan NH, Ichim TE, Min WP, Wang H, Solano F, et al.

Isolation and characterization of multi-potent stem cells from human orbital fat tissues

Author(s): Ho JH, Ma WH, Tseng TC, Chen YF, Chen MH, et al.

Isolation and characterization of canine adipose-derived mesenchymal stem cells

Author(s): Neupane M, Chang CC, Kiupel M,Yuzbasiyan-Gurkan V

Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives

Author(s): Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M, et al.

Progenitor-enriched adipose tissue transplantation as rescue for breast implant complications

Author(s): Yoshimura K, Asano Y, Aoi N, Kurita M, Oshima Y, et al.

Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report

Author(s): Lendeckel S, Jodicke A, Christophis P, Heidinger K, Wolff J, et al.

Adipose-derived stromal cells: Their identity and uses in clinical trials, an update

Author(s): Casteilla L, Planat-Benard V, Laharrague P,Cousin B

Characterization of adipose tissue-derived cells isolated with the Celution system

Author(s): Lin K, Matsubara Y, Masuda Y, Togashi K, Ohno T, et al.

Sera of overweight people promote in vitro adipocyte differentiation of bone marrow stromal cells

Author(s): Di Bernardo G, Messina G, Capasso S, Del Gaudio S, Cipollaro M, et al.

Comparison of ex vivo expansion culture conditions of mesenchymal stem cells for human cell therapy

Author(s): Perez-Ilzarbe M, Diez-Campelo M, Aranda P, Tabera S, Lopez T, et al.

Inhibition of mesenchymal stromal cells by pre-activated lymphocytes and their culture media

Author(s): Valencic E, Loganes C, Cesana S, Piscianz E, Gaipa G, et al.

Ex vivo expansion of human mesenchymal stem cells in defined serum-free media

Author(s): Jung S, Panchalingam KM, Rosenberg L,Behie LA

Optimizing proliferation and characterization of multipotent stem cells from porcine adipose tissue

Author(s): Wang KH, Kao AP, Wangchen H, Wang FY, Chang CH, et al.

Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke

Author(s): Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, et al.

Expectations and strategies regarding islet transplantation: metabolic data from the GRAGIL 2 trial

Author(s): Badet L, Benhamou PY, Wojtusciszyn A, Baertschiger R, Milliat-Guittard L, et al.

Human CD34/CD90 ASCs are capable of growing as sphere clusters, producing high levels of VEGF and forming capillaries

Author(s): De Francesco F, Tirino V, Desiderio V, Ferraro G, D'Andrea F, et al.