Antifibrotic response of cardiac fibroblasts in hypertensive hearts through enhanced TIMP-1 expression by basic fibroblast growth factor

Author(s): Kinoshita T, Ishikawa Y, Arita M, Akishima-Fukasawa Y, Fujita K, et al.


Background: Cardiac fibroblasts (CFs) play a pivotal role in the development of myocardial fibrosis. We previously demonstrated that direct injection of basic fibroblast growth factor (bFGF) into the hypertensive Dahl salt-sensitive (DS) rat heart prevented systolic dysfunction and left ventricular dilation effectively. However, the precise role played by bFGF in fibrotic response of CFs remains unclear. We suggested potential effects of bFGF on the fibrotic response of CFs in vitro.

Methods and results: Histopathologic assessment of cardiac fibrosis demonstrated a marked decline in the extent of perivascular and interstitial fibrosis in bFGF-injected hypertensive DS rat hearts. CFs harvested from the hearts of noninjected DS rats demonstrated a significantly increased messenger RNA (mRNA) expression of matrix metalloproteinase (MMP)-2, MMP-9, and both collagen I and III. In contrast, bFGF treatment in the CFs induced a marked increase in tissue inhibitor of MMP (TIMP)-1 expression and a marked decline in MMP-9 activation. bFGF also induced a decline in α-smooth muscle actin and collagen I and III mRNA expression in the CFs accompanied by inhibited differentiation of CFs into myofibroblasts. Small interfering RNA targeting FGF receptor 1 confirmed a specific interference of the mRNA expression changes elicited by bFGF. In vivo examination confirmed many TIMP-1-positive CFs in perivascular spaces of bFGF-injected hearts.

Conclusions: Up-regulated TIMP-1 expression and down-regulated MMP-9 activation by bFGF in CFs could prevent excessive ECM degradation and collagen deposition in perivascular spaces effectively, leading to prevention of cardiac fibrosis during hypertensive heart failure.

Summary: Cardiac fibroblasts (CFs) play a pivotal role in myocardial fibrosis. The precise role of CFs in fibrotic response played by growth factors remains unclear. Our results indicates that basic fibroblast growth factor could up-regulate TIMP-1 expression and down-regulate MMP-9 activation in CFs in perivascular spaces, leading to inhibited progression of cardiac fibrosis during hypertensive heart failure.

Similar Articles

Mesenchymal stem cells reduce intervertebral disc fibrosis and facilitate repair

Author(s): Leung VYL, Aladin DMK, Lv F, Tam V, Sun Y, et al.

Injection of amniotic fluid stem cells delays progression of renal fibrosis

Author(s): Sedrakyan S, Da Sacco S, Milanesi A, Shiri L, Petrosyan A, et al.

Human amniotic fluid stem cells protect rat lungs exposed to moderate hyperoxia

Author(s): Grisafi D, Pozzobon M, Dedja A, Vanzo V, Tomanin R, et al.

Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury

Author(s): Moodley Y, Atienza D, Manuelpillai U, Samuel CS, Tchongue J, et al.

Human amnion epithelial cells repair established lung injury

Author(s): Vosdoganes P, Wallace EM, Chan ST, Acharya R, Moss TJM, et al.

Human Wharton’s jelly stem cells and its conditioned medium enhance healing of excisional and diabetic wounds

Author(s): Fong CY, Tam K, Cheyyatraivendran S, Gan SU, Gauthaman K, et al.

Human Wharton’s jelly mesenchymal stem cells promote skin wound healing through paracrine signaling

Author(s): Arno AI, Amini-Nik S, Blit PH, Al-Shebab M, Belo C, et al.

Fetal wound healing: implications for minimal scar formation

Author(s): Leung A, Crombleholme TM, Keswani SG

The role of stem cells during scarless wound healing

Author(s): Hu MS, Rennert RC, McArdle A, Chung MT, Walmsley GG, et al.

Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds

Author(s): Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, et al.

Regulation of collagen synthesis by ascorbic acid

Author(s): Murad S, Grove D, Lindberg KA, Reynolds G, Sivarajah A, et al.

Effects of l-ascorbic acid 2-phosphate magnesium salt on the properties of human gingival fibroblasts

Author(s): Tsutsumi K, Fujikawa H, Kaijkawa T, Takedachi M, Yamamoto T, et al.

Identification of PLOD2 as telopeptidelysyl hydroxylase, an important enzyme in fibrosis

Author(s): van der Slot AJ, Zuurmond A, Bardoel AFJ, Wijmenga C, Pruijs HEH, et al.

Lysyl hydroxylase-2b directs collagen cross-linking pathways in MC3T3-E1 cells

Author(s): Pornprasertsuk S, Duarte WR, Mochida Y, Yamauchi M

The type of collagen cross-link determines the reversibility of experimental skin fibrosis

Author(s): van der Slot AJ, van Dura EA, Attema J, Blauw B, DeGroot J, et al.

Scarless wound healing in the mammalian fetus

Author(s): Mast BA, Diegelmann RF, Krummel TM, Cohen IK

Adult skin wounds in the fetal environment heal with scar formation

Author(s): Longaker MT, Whitby DJ, Ferguson MWJ, Lorenz HP, Harrison MR, et al.