Conditioned medium from amniotic mesenchymal tissue cells reduces progression of bleomycin-induced lung fibrosis

Author(s): Cargnoni A, Ressel L, Rossi D, Poli A, Arienti D, et al.

Abstract

Background and aims: We have demonstrated recently that transplantation of placental membrane-derived cells reduces bleomycin-induced lung fibrosis in mice, despite a limited presence of transplanted cells in host lungs. Because placenta-derived cells are known to release factors with potential immunomodulatory and trophic activities, we hypothesized that transplanted cells may promote lung tissue repair via paracrine-acting molecules. To test this hypothesis, we examined whether administration of conditioned medium (CM) generated from human amniotic mesenchymal tissue cells (AMTC) was able to reduce lung fibrosis in this same animal model.

Methods: Bleomycin-challenged mice were either treated with AMTC-CM or control medium, or were left untreated (Bleo group). After 9 and 14 days, the distribution and severity of lung fibrosis were assessed histologically with a scoring system. Collagen deposition was also evaluated by quantitative image analysis.

Results: At day 14, lung fibrosis scores in AMTC-CM-treated mice were significantly lower (P < 0.05) compared with mice of the Bleo group, in terms of fibrosis distribution [1.0 (interquartile range, IQR 0.9) versus 3.0 (IQR 1.8)], fibroblast proliferation [0.8 (IQR 0.4) versus 1.6 (IQR 1.0)], collagen deposition [1.4 (IQR 0.5) versus 2.0 (IQR 1.2)] and alveolar obliteration [2.3 (IQR 0.8) versus 3.2 (IQR 0.5)]. No differences were observed between mice of the Bleo group and mice treated with control medium. Quantitative analysis of collagen deposition confirmed these findings. Importantly, AMTC-CM treatment significantly reduced the fibrosis progression between the two observation time-points.

Conclusions: This pilot study supports the notion that AMTC exert anti-fibrotic effects through release of yet unknown soluble factors.

Similar Articles

Mesenchymal stem cells reduce intervertebral disc fibrosis and facilitate repair

Author(s): Leung VYL, Aladin DMK, Lv F, Tam V, Sun Y, et al.

Injection of amniotic fluid stem cells delays progression of renal fibrosis

Author(s): Sedrakyan S, Da Sacco S, Milanesi A, Shiri L, Petrosyan A, et al.

Human amniotic fluid stem cells protect rat lungs exposed to moderate hyperoxia

Author(s): Grisafi D, Pozzobon M, Dedja A, Vanzo V, Tomanin R, et al.

Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury

Author(s): Moodley Y, Atienza D, Manuelpillai U, Samuel CS, Tchongue J, et al.

Human amnion epithelial cells repair established lung injury

Author(s): Vosdoganes P, Wallace EM, Chan ST, Acharya R, Moss TJM, et al.

Human Wharton’s jelly stem cells and its conditioned medium enhance healing of excisional and diabetic wounds

Author(s): Fong CY, Tam K, Cheyyatraivendran S, Gan SU, Gauthaman K, et al.

Human Wharton’s jelly mesenchymal stem cells promote skin wound healing through paracrine signaling

Author(s): Arno AI, Amini-Nik S, Blit PH, Al-Shebab M, Belo C, et al.

Fetal wound healing: implications for minimal scar formation

Author(s): Leung A, Crombleholme TM, Keswani SG

The role of stem cells during scarless wound healing

Author(s): Hu MS, Rennert RC, McArdle A, Chung MT, Walmsley GG, et al.

Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds

Author(s): Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, et al.

Regulation of collagen synthesis by ascorbic acid

Author(s): Murad S, Grove D, Lindberg KA, Reynolds G, Sivarajah A, et al.

Effects of l-ascorbic acid 2-phosphate magnesium salt on the properties of human gingival fibroblasts

Author(s): Tsutsumi K, Fujikawa H, Kaijkawa T, Takedachi M, Yamamoto T, et al.

Identification of PLOD2 as telopeptidelysyl hydroxylase, an important enzyme in fibrosis

Author(s): van der Slot AJ, Zuurmond A, Bardoel AFJ, Wijmenga C, Pruijs HEH, et al.

Lysyl hydroxylase-2b directs collagen cross-linking pathways in MC3T3-E1 cells

Author(s): Pornprasertsuk S, Duarte WR, Mochida Y, Yamauchi M

The type of collagen cross-link determines the reversibility of experimental skin fibrosis

Author(s): van der Slot AJ, van Dura EA, Attema J, Blauw B, DeGroot J, et al.

Scarless wound healing in the mammalian fetus

Author(s): Mast BA, Diegelmann RF, Krummel TM, Cohen IK

Adult skin wounds in the fetal environment heal with scar formation

Author(s): Longaker MT, Whitby DJ, Ferguson MWJ, Lorenz HP, Harrison MR, et al.