Deep dermal fibroblast profibrotic characteristics are enhanced by bone marrow-derived mesenchymal stem cells

Author(s): Ding J, Ma Z, Shankowsky HA, Medina A, Tredget EE

Abstract

Hypertrophic scars are a significant fibroproliferative disorder complicating deep injuries to the skin. We hypothesize that activated deep dermal fibroblasts are subject to regulation by bone marrow-derived mesenchymal stem cells (BM-MSCs), which leads to the development of excessive fibrosis following deep dermal injury. We found that the expression of fibrotic factors was higher in deep burn wounds compared with superficial burn wounds collected from burn patients with varying depth of skin injury. We characterized deep and superficial dermal fibroblasts, which were cultured from the deep and superficial dermal layers of normal uninjured skin obtained from abdominoplasty patients, and examined the paracrine effects of BM-MSCs on the fibrotic activities of the cells. In vitro, deep dermal fibroblasts were found higher in the messenger RNA (mRNA) levels of type 1 collagen, alpha smooth muscle actin, transforming growth factor beta, stromal cell-derived factor 1, and tissue inhibitor of metalloproteinase 1, an inhibitor of collagenase (matrix metalloproteinase 1). As well, deep dermal fibroblasts had low matrix metalloproteinase 1 mRNA, produced more collagen, and contracted collagen lattices significantly greater than superficial fibroblasts. By co-culturing layered fibroblasts with BM-MSCs in a transwell insert system, BM-MSCs enhanced the fibrotic behavior of deep dermal fibroblasts, which suggests a possible involvement of BM-MSCs in the pathogenesis of hypertrophic scarring.

Similar Articles

Mesenchymal stem cells reduce intervertebral disc fibrosis and facilitate repair

Author(s): Leung VYL, Aladin DMK, Lv F, Tam V, Sun Y, et al.

Injection of amniotic fluid stem cells delays progression of renal fibrosis

Author(s): Sedrakyan S, Da Sacco S, Milanesi A, Shiri L, Petrosyan A, et al.

Human amniotic fluid stem cells protect rat lungs exposed to moderate hyperoxia

Author(s): Grisafi D, Pozzobon M, Dedja A, Vanzo V, Tomanin R, et al.

Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury

Author(s): Moodley Y, Atienza D, Manuelpillai U, Samuel CS, Tchongue J, et al.

Human amnion epithelial cells repair established lung injury

Author(s): Vosdoganes P, Wallace EM, Chan ST, Acharya R, Moss TJM, et al.

Human Wharton’s jelly stem cells and its conditioned medium enhance healing of excisional and diabetic wounds

Author(s): Fong CY, Tam K, Cheyyatraivendran S, Gan SU, Gauthaman K, et al.

Human Wharton’s jelly mesenchymal stem cells promote skin wound healing through paracrine signaling

Author(s): Arno AI, Amini-Nik S, Blit PH, Al-Shebab M, Belo C, et al.

Fetal wound healing: implications for minimal scar formation

Author(s): Leung A, Crombleholme TM, Keswani SG

The role of stem cells during scarless wound healing

Author(s): Hu MS, Rennert RC, McArdle A, Chung MT, Walmsley GG, et al.

Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds

Author(s): Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, et al.

Regulation of collagen synthesis by ascorbic acid

Author(s): Murad S, Grove D, Lindberg KA, Reynolds G, Sivarajah A, et al.

Effects of l-ascorbic acid 2-phosphate magnesium salt on the properties of human gingival fibroblasts

Author(s): Tsutsumi K, Fujikawa H, Kaijkawa T, Takedachi M, Yamamoto T, et al.

Identification of PLOD2 as telopeptidelysyl hydroxylase, an important enzyme in fibrosis

Author(s): van der Slot AJ, Zuurmond A, Bardoel AFJ, Wijmenga C, Pruijs HEH, et al.

Lysyl hydroxylase-2b directs collagen cross-linking pathways in MC3T3-E1 cells

Author(s): Pornprasertsuk S, Duarte WR, Mochida Y, Yamauchi M

The type of collagen cross-link determines the reversibility of experimental skin fibrosis

Author(s): van der Slot AJ, van Dura EA, Attema J, Blauw B, DeGroot J, et al.

Scarless wound healing in the mammalian fetus

Author(s): Mast BA, Diegelmann RF, Krummel TM, Cohen IK

Adult skin wounds in the fetal environment heal with scar formation

Author(s): Longaker MT, Whitby DJ, Ferguson MWJ, Lorenz HP, Harrison MR, et al.