Defective vasculogenesis in systemic sclerosis

Author(s): Kuwana M, Okazaki Y, Yasuoka H, Kawakami Y, Ikeda Y

Abstract

Background: Typical vascular features of systemic sclerosis include low capillary density and vascular obliteration. The formation and repair of blood vessels in adults involve vasculogenesis, which is mediated through the recruitment of bone-marrow-derived circulating endothelial precursors (CEP). We investigated whether vasculogenesis is impaired in patients with systemic sclerosis.

Methods: Peripheral blood was obtained from 11 patients with systemic sclerosis, 11 with rheumatoid arthritis, and 11 healthy controls. Factors potentially affecting the CEP number were matched among the three groups. CEP (identified as circulating cells positive for CD34, CD133, and the type 2 receptor for vascular endothelial growth factor) were quantified by cell sorting and three-colour flow cytometry. The circulating concentrations of angiogenic factors were measured by ELISA. The potential of CEP to differentiate into endothelial cells was assessed by the upregulation of von Willebrand factor after in-vitro maturation treatment. Findings The absolute number of CEP was much lower in patients with systemic sclerosis than in patients with rheumatoid arthritis or healthy controls (median 274 [IQR 178-395] vs 1154 [653-1524] and 1074 [713-1186] per 20 mL peripheral blood, respectively; p<0.0001 by Kruskal-Wallis test. Paradoxically, circulating concentrations of most angiogenic factors were significantly higher in patients with systemic sclerosis than in healthy controls. The proportion of CEP that differentiated into endothelial cells was significantly lower in patients with systemic sclerosis than in healthy controls (p<0.0001, Mann-Whitney test).

Interpretation: Insufficient vascular repair machinery due to defective vasculogenesis might contribute to vasculopathy in systemic sclerosis.

Relevance to practice: As well as providing an important insight into the pathogenesis of this disorder, these findings suggest that dysregulated vasculogenesis might be important in other disorders with abnormalities in vascular formation, including those with excessive formation of new vessels such as cancer and those with deficient vessel formation such as atherosclerosis. Circulating endothelial precursors could be a novel target for therapeutic strategies for ischaemic complications in patients with systemic sclerosis.

Similar Articles

Neurological emergencies: acute stroke

Author(s): Davenport R, Dennis M

Cost-effectiveness of tissue plasminogen activator for acute ischemic stroke

Author(s): Fagan SC, Morgenstern LB, Petitta A, Ward RE, Tilley BC, et al.

REACH: clinical feasibility of a rural telestroke network

Author(s): Hess DC, Wang S, Hamilton W, Lee S, Pardue C, et al.

Remote evaluation of acute ischemic stroke in rural community hospitals in Georgia

Author(s): Wang S, Gross H, Lee SB, Pardue C, Waller J, et al.

Gene therapy, cell transplantation and stroke

Author(s): Borlongan CV, Fournier C, Stahl CE, Yu G, Xu L, et al.

Therapeutic targets and limits of minocycline neuroprotection in experimental ischemic stroke

Author(s): Matsukawa N, Yasuhara T, Hara K, Xu L, Maki M, et al.

The albumin in acute stroke trial (ALIAS); design and methodology

Author(s): Hill MD, Moy CS, Palesch YY, Martin R, Dillon CR, et al.

Grafting neural stem cells improved the impaired spatial recognition in ischemic rats

Author(s): Toda H, Takahashi J, Iwakami N, Kimura T, Hoki S, et al.

Adult rat and human bone marrow stromal cells differentiate into neurons

Author(s): Woodbury D, Schwarz EJ, Prockop DJ, Black IB

Bone marrow as a source of endothelial cells and NeuN-expressing cells After stroke

Author(s): Hess DC, Hill WD, Martin-Studdard A, Carroll J, Brailer J, et al.

Intravenous versus intrastriatal cord blood administration in a rodent model of stroke

Author(s): Willing AE, Lixian J, Milliken M, Poulos S, Zigova T, et al.

Origin of endothelial progenitors in human postnatal bone marrow

Author(s): Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, et al.

Autologous bone marrow stem cell neurotransplantation in stroke patients

Author(s): Suárez-Monteagudo C, Hernández-Ramírez P, Alvarez-González L, García-Maeso I, de la Cuétara-Bernal K, et al.

Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli

Author(s): Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, et al.

Engineering mesenchymal stem cells for immunotherapy

Author(s): Jorgensen C, Djouad F, Apparailly F, Noël D

Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells

Author(s): Le Blanc K, Rasmusson I, Sundberg B, Götherström C, Hassan M, et al.

Ischaemic brain oedema

Author(s): Ayata C, Ropper AH

Inflammation markers and prediction of post-stroke vascular disease recurrence: the MITICO study

Author(s): Castillo J, Alvarez-Sabín J, Martínez-Vila E, Montaner J, Sobrino T, et al.

Proinflammatory cytokines and early neurological worsening in ischemic stroke

Author(s): Vila N, Castillo J, Dávalos A, Chamorro A

Mechanisms of ischemic brain damage

Author(s): Doyle KP, Simon RP, Stenzel-Poore MP

Evidence for circulating bone marrow-derived endothelial cells

Author(s): Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, et al.

Reduced number of circulating endothelial progenitors and HOXA9 expression in CD34+ cells of hypertensive patients

Author(s): Pirro M, Schillaci G, Menecali C, Bagaglia F, Paltriccia R, et al.

Bone marrow endothelial progenitors are defective in systemic sclerosis

Author(s): Del Papa N, Quirici N, Soligo D, Scavullo C, Cortiana M, et al.

Impaired progenitor cell activity in age-related endothelial dysfunction

Author(s): Heiss C, Keymel S, Niesler U, Ziemann J, Kelm M, et al.

Smoking cessation rapidly increases circulating progenitor cells in peripheral blood in chronic smokers

Author(s): Kondo T, Hayashi M, Takeshita K, Numaguchi Y, Kobayashi K, et al.

Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia

Author(s): Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, et al.

Transplantation of low dose CD34+KDR+ cells promotes vascular and muscular regeneration in ischemic limbs

Author(s): Madeddu P, Emanueli C, Pelosi E, Salis MB, Cerio AM, et al.

Endothelial progenitor cell research in stroke: a potential shift in pathophysiological and therapeutical concepts

Author(s): Rouhl RP, van Oostenbrugge RJ, Damoiseaux J, Tervaert JW, Lodder J

Autologous bone marrow mononuclear cell transplantation in patients undergoing coronary artery bypass grafting

Author(s): Mocini D, Staibano M, Mele L, Giannantoni P, Menichella G, et al.

Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure

Author(s): Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, et al.

Unchain my heart: the scientific foundations of cardiac repair

Author(s): Dimmeler S, Zeiher AM, Schneider MD

Circulating CD34-positive cells provide an index of cerebrovascular function

Author(s): Taguchi A, Matsuyama T, Moriwaki H, Hayashi T, Hayashida K, et al.

Endothelial progenitor cells during cerebrovascular disease

Author(s): Ghani U, Shuaib A, Salam A, Nasir A, Shuaib U, et al.