Effects of l-ascorbic acid 2-phosphate magnesium salt on the properties of human gingival fibroblasts

Author(s): Tsutsumi K, Fujikawa H, Kaijkawa T, Takedachi M, Yamamoto T, et al.

Abstract

Background and objective: L-Ascorbic acid 2-phosphate magnesium salt (APM) is an L-ascorbic acid (AsA) derivative developed to improve AsA stability and display effective biochemical characteristics. This study aimed to investigate the effects of APM on the functions and properties of human gingival fibroblasts with respect to the prevention of periodontal disease in comparison with those of AsA.

Material and methods: Human gingival fibroblasts were incubated in the presence or absence of APM or L-ascorbic acid sodium salt (AsANa). Intracellular AsA was analysed by HPLC. Collagen synthesis was measured by ELISA and real-time RT-PCR. Intracellular reactive oxygen species (ROS) induced by hydrogen peroxide (H(2)O(2)) were quantified using a fluorescence reagent, and cell damage was estimated with calcein acetoxymethyl ester. Furthermore, intracellular ROS induced by tumor necrosis factor-α (TNF-α) were quantified, and expression of TNF-α-induced interleukin-8 expression, which increases due to inflammatory reactions, was measured by ELISA and real-time RT-PCR.

Results: APM remarkably and continuously enhanced intracellular AsA and promoted type 1 collagen synthesis and mRNA expression. Furthermore, APM decreased cell damage through the suppression of H(2)O(2)-induced intracellular ROS and inhibited interleukin-8 production through the suppression of TNF-α-induced intracellular ROS. These effects of APM were superior to those of AsANa.

Conclusion: These results suggest that APM is more effective than AsANa in terms of intake, collagen synthesis, decreasing cell damage and inhibiting interleukin-8 expression in human gingival fibroblasts. This suggests that local application of APM can help to prevent periodontal disease.

Similar Articles

Mesenchymal stem cells reduce intervertebral disc fibrosis and facilitate repair

Author(s): Leung VYL, Aladin DMK, Lv F, Tam V, Sun Y, et al.

Injection of amniotic fluid stem cells delays progression of renal fibrosis

Author(s): Sedrakyan S, Da Sacco S, Milanesi A, Shiri L, Petrosyan A, et al.

Human amniotic fluid stem cells protect rat lungs exposed to moderate hyperoxia

Author(s): Grisafi D, Pozzobon M, Dedja A, Vanzo V, Tomanin R, et al.

Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury

Author(s): Moodley Y, Atienza D, Manuelpillai U, Samuel CS, Tchongue J, et al.

Human amnion epithelial cells repair established lung injury

Author(s): Vosdoganes P, Wallace EM, Chan ST, Acharya R, Moss TJM, et al.

Human Wharton’s jelly stem cells and its conditioned medium enhance healing of excisional and diabetic wounds

Author(s): Fong CY, Tam K, Cheyyatraivendran S, Gan SU, Gauthaman K, et al.

Human Wharton’s jelly mesenchymal stem cells promote skin wound healing through paracrine signaling

Author(s): Arno AI, Amini-Nik S, Blit PH, Al-Shebab M, Belo C, et al.

Fetal wound healing: implications for minimal scar formation

Author(s): Leung A, Crombleholme TM, Keswani SG

The role of stem cells during scarless wound healing

Author(s): Hu MS, Rennert RC, McArdle A, Chung MT, Walmsley GG, et al.

Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds

Author(s): Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, et al.

Regulation of collagen synthesis by ascorbic acid

Author(s): Murad S, Grove D, Lindberg KA, Reynolds G, Sivarajah A, et al.

Identification of PLOD2 as telopeptidelysyl hydroxylase, an important enzyme in fibrosis

Author(s): van der Slot AJ, Zuurmond A, Bardoel AFJ, Wijmenga C, Pruijs HEH, et al.

Lysyl hydroxylase-2b directs collagen cross-linking pathways in MC3T3-E1 cells

Author(s): Pornprasertsuk S, Duarte WR, Mochida Y, Yamauchi M

The type of collagen cross-link determines the reversibility of experimental skin fibrosis

Author(s): van der Slot AJ, van Dura EA, Attema J, Blauw B, DeGroot J, et al.

Scarless wound healing in the mammalian fetus

Author(s): Mast BA, Diegelmann RF, Krummel TM, Cohen IK

Adult skin wounds in the fetal environment heal with scar formation

Author(s): Longaker MT, Whitby DJ, Ferguson MWJ, Lorenz HP, Harrison MR, et al.