Human amniotic fluid stem cells protect rat lungs exposed to moderate hyperoxia

Author(s): Grisafi D, Pozzobon M, Dedja A, Vanzo V, Tomanin R, et al.


Background: Treatment of bronchopulmonary dysplasia (BPD) remains as yet an unmet clinical need and recently stem cells have been proposed as a therapeutic tool in animal models. We investigated the role of amniotic fluid stem cells (AFS) in an adult rat model of hyperoxia lung injury.

Methods: Fifty Sprague-Dawley rats were, at birth, randomly exposed to moderate hyperoxia or room air for 14 days and a single dose of human amniotic fluid stem (hAFS) or human Fibroblasts (hF), cells was delivered intratracheally (P21). At P42 animals were euthanized and lung tissue examined using histology, immunohistochemistry, PCR, and ELISA. hAFS cells characterization and homing were studied by immunofluorescence.

Results: In rats treated with hAFS and hF cells 16S human rRNA fragment was detected. Despite a low level of pulmonary hAFS cell retention (1.43 ± 0.2% anti-human-mitochondria-positive cells), the lungs of the treated animals revealed higher secondary crest numbers and lower mean linear intercept and alveolar size, than those exposed to hyperoxia, those left untreated or treated with hF cells. Except for those treated with hAFS cells, moderate hyperoxia induced an increase in protein content of IL-6, IL-1β, as well as IF-γ and TGF-1β in lung tissues. High VEGF expression and arrangement of capillary architecture in hAFS cell group were also detected.

Conclusions: Treatment with hAFS cells has a reparative potential through active involvement of cells in alveolarization and angiogenesis. A downstream paracrine action was also taken into account, in order to understand the immunodulatory response.

Similar Articles

Mesenchymal stem cells reduce intervertebral disc fibrosis and facilitate repair

Author(s): Leung VYL, Aladin DMK, Lv F, Tam V, Sun Y, et al.

Injection of amniotic fluid stem cells delays progression of renal fibrosis

Author(s): Sedrakyan S, Da Sacco S, Milanesi A, Shiri L, Petrosyan A, et al.

Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury

Author(s): Moodley Y, Atienza D, Manuelpillai U, Samuel CS, Tchongue J, et al.

Human amnion epithelial cells repair established lung injury

Author(s): Vosdoganes P, Wallace EM, Chan ST, Acharya R, Moss TJM, et al.

Human Wharton’s jelly stem cells and its conditioned medium enhance healing of excisional and diabetic wounds

Author(s): Fong CY, Tam K, Cheyyatraivendran S, Gan SU, Gauthaman K, et al.

Human Wharton’s jelly mesenchymal stem cells promote skin wound healing through paracrine signaling

Author(s): Arno AI, Amini-Nik S, Blit PH, Al-Shebab M, Belo C, et al.

Fetal wound healing: implications for minimal scar formation

Author(s): Leung A, Crombleholme TM, Keswani SG

The role of stem cells during scarless wound healing

Author(s): Hu MS, Rennert RC, McArdle A, Chung MT, Walmsley GG, et al.

Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds

Author(s): Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, et al.

Regulation of collagen synthesis by ascorbic acid

Author(s): Murad S, Grove D, Lindberg KA, Reynolds G, Sivarajah A, et al.

Effects of l-ascorbic acid 2-phosphate magnesium salt on the properties of human gingival fibroblasts

Author(s): Tsutsumi K, Fujikawa H, Kaijkawa T, Takedachi M, Yamamoto T, et al.

Identification of PLOD2 as telopeptidelysyl hydroxylase, an important enzyme in fibrosis

Author(s): van der Slot AJ, Zuurmond A, Bardoel AFJ, Wijmenga C, Pruijs HEH, et al.

Lysyl hydroxylase-2b directs collagen cross-linking pathways in MC3T3-E1 cells

Author(s): Pornprasertsuk S, Duarte WR, Mochida Y, Yamauchi M

The type of collagen cross-link determines the reversibility of experimental skin fibrosis

Author(s): van der Slot AJ, van Dura EA, Attema J, Blauw B, DeGroot J, et al.

Scarless wound healing in the mammalian fetus

Author(s): Mast BA, Diegelmann RF, Krummel TM, Cohen IK

Adult skin wounds in the fetal environment heal with scar formation

Author(s): Longaker MT, Whitby DJ, Ferguson MWJ, Lorenz HP, Harrison MR, et al.