Isolation method and xeno-free culture conditions influence multipotent differentiation capacity of human Wharton's jelly-derived mesenchymal stem cells

Author(s): Corotchi MC, Popa MA, Remes A, Sima LE, Gussi I, et al.

Abstract

Introduction: Human Wharton's jelly (WJ) has become a preferred source of mesenchymal stem cells (MSCs) whose clinical applications are limited by the use of adequate xeno-free (XF), in vitro manipulation conditions. Therefore, the objective of our study was to characterize WJ-derived MSCs (WJ-MSCs), isolated by different methods and cultured in a commercially available, MSC XF medium, not least of all by investigating their endothelial differentiation capacity.

Methods: WJ explants and enzymatically dissociated WJ cells were cultured in a defined, XF medium for MSCs. Adherent cells at passages 2 and 5 were characterized as MSCs by flow cytometry, MTT, real-time quantitative reverse transcription PCR, and functional multipotent differentiation assays. The endothelial differentiation capacity of MSCs isolated and expanded until passage 2 in the MSC XF medium, and then subcultured for five passages in a commercially available endothelial growth medium (group A), was assessed over serial passages, as compared to adherent WJ-derived cells isolated and expanded for five consecutive passages in the endothelial medium (group B).

Results: The MSC phenotype of WJ explant- and pellet-derived cells, isolated and expanded in the MSC XF medium, was proven based on the expression of CD44/CD73/CD90/CD105 surface markers and osteo-/adipo-/chondrogenic multipotent differentiation potential, which differed according to the isolation method and/or passage number. Upon exposure to endothelial differentiation cues, cells belonging to group A did not exhibit endothelial cell characteristics over serial passages; by contrast, WJ pellet-derived cells belonging to group B expressed endothelial characteristics at gene, protein and functional levels, potentially due to culture conditions favoring the isolation of other stem/progenitor cell types than MSCs, able to give rise to an endothelial progeny.

Conclusions: The use of defined, MSC XF media for isolation and expansion of human WJ-MSCs is a prerequisite for the establishment of their real endothelial differentiation capacity, as candidates for clinical therapy applications. Thus, the standardization of WJ-MSCs isolation and culture expansion techniques in defined, MSC XF media, for their accurate characterization, would be a priority in the stem cell research field.

Similar Articles

Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis

Author(s): Riordan NH, Ichim TE, Min WP, Wang H, Solano F, et al.

Isolation and characterization of multi-potent stem cells from human orbital fat tissues

Author(s): Ho JH, Ma WH, Tseng TC, Chen YF, Chen MH, et al.

Isolation and characterization of canine adipose-derived mesenchymal stem cells

Author(s): Neupane M, Chang CC, Kiupel M,Yuzbasiyan-Gurkan V

Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives

Author(s): Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M, et al.

Progenitor-enriched adipose tissue transplantation as rescue for breast implant complications

Author(s): Yoshimura K, Asano Y, Aoi N, Kurita M, Oshima Y, et al.

Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report

Author(s): Lendeckel S, Jodicke A, Christophis P, Heidinger K, Wolff J, et al.

Adipose-derived stromal cells: Their identity and uses in clinical trials, an update

Author(s): Casteilla L, Planat-Benard V, Laharrague P,Cousin B

A simple modification of the separation method reduces heterogeneity of adipose-derived stem cells

Author(s): Griesche N, Luttmann W, Luttmann A, Stammermann T, Geiger H, et al.

Characterization of adipose tissue-derived cells isolated with the Celution system

Author(s): Lin K, Matsubara Y, Masuda Y, Togashi K, Ohno T, et al.

Sera of overweight people promote in vitro adipocyte differentiation of bone marrow stromal cells

Author(s): Di Bernardo G, Messina G, Capasso S, Del Gaudio S, Cipollaro M, et al.

Comparison of ex vivo expansion culture conditions of mesenchymal stem cells for human cell therapy

Author(s): Perez-Ilzarbe M, Diez-Campelo M, Aranda P, Tabera S, Lopez T, et al.

Inhibition of mesenchymal stromal cells by pre-activated lymphocytes and their culture media

Author(s): Valencic E, Loganes C, Cesana S, Piscianz E, Gaipa G, et al.

Ex vivo expansion of human mesenchymal stem cells in defined serum-free media

Author(s): Jung S, Panchalingam KM, Rosenberg L,Behie LA

Optimizing proliferation and characterization of multipotent stem cells from porcine adipose tissue

Author(s): Wang KH, Kao AP, Wangchen H, Wang FY, Chang CH, et al.

Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke

Author(s): Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, et al.

Expectations and strategies regarding islet transplantation: metabolic data from the GRAGIL 2 trial

Author(s): Badet L, Benhamou PY, Wojtusciszyn A, Baertschiger R, Milliat-Guittard L, et al.

Human CD34/CD90 ASCs are capable of growing as sphere clusters, producing high levels of VEGF and forming capillaries

Author(s): De Francesco F, Tirino V, Desiderio V, Ferraro G, D'Andrea F, et al.