Mesenchymal stem cells’ interaction with skin: wound-healing effect on fibroblast cells and skin tissue

Author(s): Jeon YK, Jang YH, Yoo DR, Kim SN, Lee SK, et al.

Abstract

Mesenchymal stem cells (MSCs) are multipotent progenitor cells with the ability to secrete growth factors. Because wound healing is associated with fibroblast cells and extracellular matrix (ECM) in the dermis and epidermis, we used fibroblast cells to resolve the question of whether or not MSCs regulate wound healing in vitro via a regenerative function. Using a cell proliferation assay, we demonstrated that conditioned media (CM) obtained from MSCs significantly enhanced the cell survival ability of fibroblast cells. Moreover, by measurement of mRNA and protein, we observed that CM also promoted the production or secretion of collagen, elastin, and fibronectin. To better understand the effects of ECM-related wound healing, we measured the level of collagen-degradative enzyme (matrix metalloprotease-1), and observed that CM suppressed matrix metalloprotease-1 expression. For the determination of oxidative stress, which has an influence on wound healing, we performed the superoxide dismutase and glutathione peroxidase assays; our results suggested that CM inhibited the oxidative stress of fibroblast cells. In order to widely investigate the wound-healing effects of MSCs, we performed in vivo experiments, and observed that MSCs stimulated wound healing. In summary, the results of this study suggest that MSCs inhibit the loss of fibroblast cells and ECM, and accumulation of oxidative stress. We found that MSCs stimulate wound healing in vitro and in vivo, suggesting that MSCs have the potential to enhance wound healing.

Similar Articles

Mesenchymal stem cells reduce intervertebral disc fibrosis and facilitate repair

Author(s): Leung VYL, Aladin DMK, Lv F, Tam V, Sun Y, et al.

Injection of amniotic fluid stem cells delays progression of renal fibrosis

Author(s): Sedrakyan S, Da Sacco S, Milanesi A, Shiri L, Petrosyan A, et al.

Human amniotic fluid stem cells protect rat lungs exposed to moderate hyperoxia

Author(s): Grisafi D, Pozzobon M, Dedja A, Vanzo V, Tomanin R, et al.

Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury

Author(s): Moodley Y, Atienza D, Manuelpillai U, Samuel CS, Tchongue J, et al.

Human amnion epithelial cells repair established lung injury

Author(s): Vosdoganes P, Wallace EM, Chan ST, Acharya R, Moss TJM, et al.

Human Wharton’s jelly stem cells and its conditioned medium enhance healing of excisional and diabetic wounds

Author(s): Fong CY, Tam K, Cheyyatraivendran S, Gan SU, Gauthaman K, et al.

Human Wharton’s jelly mesenchymal stem cells promote skin wound healing through paracrine signaling

Author(s): Arno AI, Amini-Nik S, Blit PH, Al-Shebab M, Belo C, et al.

Fetal wound healing: implications for minimal scar formation

Author(s): Leung A, Crombleholme TM, Keswani SG

The role of stem cells during scarless wound healing

Author(s): Hu MS, Rennert RC, McArdle A, Chung MT, Walmsley GG, et al.

Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds

Author(s): Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, et al.

Regulation of collagen synthesis by ascorbic acid

Author(s): Murad S, Grove D, Lindberg KA, Reynolds G, Sivarajah A, et al.

Effects of l-ascorbic acid 2-phosphate magnesium salt on the properties of human gingival fibroblasts

Author(s): Tsutsumi K, Fujikawa H, Kaijkawa T, Takedachi M, Yamamoto T, et al.

Identification of PLOD2 as telopeptidelysyl hydroxylase, an important enzyme in fibrosis

Author(s): van der Slot AJ, Zuurmond A, Bardoel AFJ, Wijmenga C, Pruijs HEH, et al.

Lysyl hydroxylase-2b directs collagen cross-linking pathways in MC3T3-E1 cells

Author(s): Pornprasertsuk S, Duarte WR, Mochida Y, Yamauchi M

The type of collagen cross-link determines the reversibility of experimental skin fibrosis

Author(s): van der Slot AJ, van Dura EA, Attema J, Blauw B, DeGroot J, et al.

Scarless wound healing in the mammalian fetus

Author(s): Mast BA, Diegelmann RF, Krummel TM, Cohen IK

Adult skin wounds in the fetal environment heal with scar formation

Author(s): Longaker MT, Whitby DJ, Ferguson MWJ, Lorenz HP, Harrison MR, et al.