The wound-healing and antioxidant effects of adipose-derived stem cells

Author(s): Kim WS, Park BS,Sung JH

Abstract

Background: The aim of tissue engineering is to repair and regenerate damaged organs using a combination of cells, biomaterials and growth factors. Mesenchymal stem cells within the stromal-vascular fraction of subcutaneous adipose tissue, that is adipose-derived stem cells (ADSCs) have been used in skin repair with satisfactory results. The production and secretion of growth factors has been reported to be an essential function of ADSCs, and diverse regenerative effects of ADSCs in the skin have been demonstrated.

Objective: Recent research developments concerning the wound-healing and antioxidant effects of ADSCs are briefly described.

Methods: Various experimental results regarding the wound-healing and antioxidant effect of ADSCs are introduced, and the mechanisms and identification of active proteins involved in these function are further discussed.

Results/conclusion: Evidence of ADSC differentiation of skin has not been reported in vivo, but ADSCs accelerate wound-healing and exhibit antioxidant effects under various conditions. The wound-healing and antioxidant effects of ADSCs are mainly mediated by the activation of dermal fibroblasts and keratinocytes via the paracrine mechanism. Since ADSCs are easily obtained in large quantities and have an advantage over other stem cell sources, ADSCs and their secretory factors show promise for use in skin repair and regeneration.

Similar Articles

Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis

Author(s): Riordan NH, Ichim TE, Min WP, Wang H, Solano F, et al.

Isolation and characterization of multi-potent stem cells from human orbital fat tissues

Author(s): Ho JH, Ma WH, Tseng TC, Chen YF, Chen MH, et al.

Isolation and characterization of canine adipose-derived mesenchymal stem cells

Author(s): Neupane M, Chang CC, Kiupel M,Yuzbasiyan-Gurkan V

Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives

Author(s): Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M, et al.

Progenitor-enriched adipose tissue transplantation as rescue for breast implant complications

Author(s): Yoshimura K, Asano Y, Aoi N, Kurita M, Oshima Y, et al.

Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report

Author(s): Lendeckel S, Jodicke A, Christophis P, Heidinger K, Wolff J, et al.

Adipose-derived stromal cells: Their identity and uses in clinical trials, an update

Author(s): Casteilla L, Planat-Benard V, Laharrague P,Cousin B

A simple modification of the separation method reduces heterogeneity of adipose-derived stem cells

Author(s): Griesche N, Luttmann W, Luttmann A, Stammermann T, Geiger H, et al.

Characterization of adipose tissue-derived cells isolated with the Celution system

Author(s): Lin K, Matsubara Y, Masuda Y, Togashi K, Ohno T, et al.

Sera of overweight people promote in vitro adipocyte differentiation of bone marrow stromal cells

Author(s): Di Bernardo G, Messina G, Capasso S, Del Gaudio S, Cipollaro M, et al.

Comparison of ex vivo expansion culture conditions of mesenchymal stem cells for human cell therapy

Author(s): Perez-Ilzarbe M, Diez-Campelo M, Aranda P, Tabera S, Lopez T, et al.

Inhibition of mesenchymal stromal cells by pre-activated lymphocytes and their culture media

Author(s): Valencic E, Loganes C, Cesana S, Piscianz E, Gaipa G, et al.

Ex vivo expansion of human mesenchymal stem cells in defined serum-free media

Author(s): Jung S, Panchalingam KM, Rosenberg L,Behie LA

Optimizing proliferation and characterization of multipotent stem cells from porcine adipose tissue

Author(s): Wang KH, Kao AP, Wangchen H, Wang FY, Chang CH, et al.

Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke

Author(s): Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, et al.

Expectations and strategies regarding islet transplantation: metabolic data from the GRAGIL 2 trial

Author(s): Badet L, Benhamou PY, Wojtusciszyn A, Baertschiger R, Milliat-Guittard L, et al.

Human CD34/CD90 ASCs are capable of growing as sphere clusters, producing high levels of VEGF and forming capillaries

Author(s): De Francesco F, Tirino V, Desiderio V, Ferraro G, D'Andrea F, et al.