Transplantation of progenitor cells after reperfused acute myocardial infarction: evaluation of perfusion and myocardial viability with FDG-PET and thallium SPECT

Author(s): Döbert N, Britten M, Assmus B, Berner U, Menzel C, et al.

Abstract

Clinical outcome after myocardial infarction depends on the extent of irreversibly damaged myocardium. Implantation of bone marrow-/circulating blood-derived progenitor cells has been shown to improve contractile cardiac function after myocardial infarction in both experimental and initial clinical studies. In the present study, first observations of the effect of local intracoronary progenitor cell infusion on the regeneration of infarcted cardiac tissue after acute myocardial infarction was evaluated by means of 18F-fluorodeoxyglucose positron emission tomography (PET) and 201Tl single-photon emission computed tomography (SPECT). Twenty-six patients underwent intracoronary infusion of bone marrow-derived (BMCs) (15 patients) or circulating blood-derived endothelial progenitor cells (EPCs) (11 patients) 4+/-2 days after acute myocardial infarction. Based on a left ventricular segmentation model (17 segments), mean signal intensities as a parameter of viability and perfusion in the infarct zone and non-infarct areas were calculated quantitatively by PET and SPECT at baseline and at 4 months of follow-up. Transplantation of progenitor cells was associated with a significant increase in the mean signal intensity (MSI) in the infarct zone from 54.5% (25th and 75th percentiles: 47.7%, 60.0%) to 58.0% (52.7%, 66.7%) on PET (P=0.013) and from 58.0% (49.5%, 63.0%) to 61.5% (52.5%, 70.2%) on SPECT (P=0.005). Global left ventricular ejection fraction (LVEF) increased from 53.5% (42.6%, 60.0%) to 58.0% (53.0%, 65.8%) (P<0.001). In the five patients without an increase in MSI on PET, LVEF changed from 60.0% (50.0%, 64.0%) to 72.0% (64.0%, 75.5%) at follow-up. PET and SPECT did not show any significant changes in MSI in the non-infarct areas [from 73% (68.5%, 76.2%) to 73% (69.7%, 78.0%) for PET and from 72.0% (66.5%, 77.6%) to 73.0% (67.5%, 78.2%) for SPECT]. There were no significant differences in myocardial viability and perfusion between BMC and EPC infusion. These preliminary results show that coronary stenting and transplantation of progenitor cells result in a significant increase in myocardial viability and perfusion. Therapeutic effects can be reliably measured by PET and SPECT.

Similar Articles

Neurological emergencies: acute stroke

Author(s): Davenport R, Dennis M

Cost-effectiveness of tissue plasminogen activator for acute ischemic stroke

Author(s): Fagan SC, Morgenstern LB, Petitta A, Ward RE, Tilley BC, et al.

REACH: clinical feasibility of a rural telestroke network

Author(s): Hess DC, Wang S, Hamilton W, Lee S, Pardue C, et al.

Remote evaluation of acute ischemic stroke in rural community hospitals in Georgia

Author(s): Wang S, Gross H, Lee SB, Pardue C, Waller J, et al.

Gene therapy, cell transplantation and stroke

Author(s): Borlongan CV, Fournier C, Stahl CE, Yu G, Xu L, et al.

Therapeutic targets and limits of minocycline neuroprotection in experimental ischemic stroke

Author(s): Matsukawa N, Yasuhara T, Hara K, Xu L, Maki M, et al.

The albumin in acute stroke trial (ALIAS); design and methodology

Author(s): Hill MD, Moy CS, Palesch YY, Martin R, Dillon CR, et al.

Grafting neural stem cells improved the impaired spatial recognition in ischemic rats

Author(s): Toda H, Takahashi J, Iwakami N, Kimura T, Hoki S, et al.

Adult rat and human bone marrow stromal cells differentiate into neurons

Author(s): Woodbury D, Schwarz EJ, Prockop DJ, Black IB

Bone marrow as a source of endothelial cells and NeuN-expressing cells After stroke

Author(s): Hess DC, Hill WD, Martin-Studdard A, Carroll J, Brailer J, et al.

Intravenous versus intrastriatal cord blood administration in a rodent model of stroke

Author(s): Willing AE, Lixian J, Milliken M, Poulos S, Zigova T, et al.

Origin of endothelial progenitors in human postnatal bone marrow

Author(s): Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, et al.

Autologous bone marrow stem cell neurotransplantation in stroke patients

Author(s): Suárez-Monteagudo C, Hernández-Ramírez P, Alvarez-González L, García-Maeso I, de la Cuétara-Bernal K, et al.

Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli

Author(s): Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, et al.

Engineering mesenchymal stem cells for immunotherapy

Author(s): Jorgensen C, Djouad F, Apparailly F, Noël D

Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells

Author(s): Le Blanc K, Rasmusson I, Sundberg B, Götherström C, Hassan M, et al.

Ischaemic brain oedema

Author(s): Ayata C, Ropper AH

Inflammation markers and prediction of post-stroke vascular disease recurrence: the MITICO study

Author(s): Castillo J, Alvarez-Sabín J, Martínez-Vila E, Montaner J, Sobrino T, et al.

Proinflammatory cytokines and early neurological worsening in ischemic stroke

Author(s): Vila N, Castillo J, Dávalos A, Chamorro A

Mechanisms of ischemic brain damage

Author(s): Doyle KP, Simon RP, Stenzel-Poore MP

Evidence for circulating bone marrow-derived endothelial cells

Author(s): Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, et al.

Reduced number of circulating endothelial progenitors and HOXA9 expression in CD34+ cells of hypertensive patients

Author(s): Pirro M, Schillaci G, Menecali C, Bagaglia F, Paltriccia R, et al.

Bone marrow endothelial progenitors are defective in systemic sclerosis

Author(s): Del Papa N, Quirici N, Soligo D, Scavullo C, Cortiana M, et al.

Defective vasculogenesis in systemic sclerosis

Author(s): Kuwana M, Okazaki Y, Yasuoka H, Kawakami Y, Ikeda Y

Impaired progenitor cell activity in age-related endothelial dysfunction

Author(s): Heiss C, Keymel S, Niesler U, Ziemann J, Kelm M, et al.

Smoking cessation rapidly increases circulating progenitor cells in peripheral blood in chronic smokers

Author(s): Kondo T, Hayashi M, Takeshita K, Numaguchi Y, Kobayashi K, et al.

Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia

Author(s): Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, et al.

Transplantation of low dose CD34+KDR+ cells promotes vascular and muscular regeneration in ischemic limbs

Author(s): Madeddu P, Emanueli C, Pelosi E, Salis MB, Cerio AM, et al.

Endothelial progenitor cell research in stroke: a potential shift in pathophysiological and therapeutical concepts

Author(s): Rouhl RP, van Oostenbrugge RJ, Damoiseaux J, Tervaert JW, Lodder J

Autologous bone marrow mononuclear cell transplantation in patients undergoing coronary artery bypass grafting

Author(s): Mocini D, Staibano M, Mele L, Giannantoni P, Menichella G, et al.

Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure

Author(s): Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, et al.

Unchain my heart: the scientific foundations of cardiac repair

Author(s): Dimmeler S, Zeiher AM, Schneider MD

Circulating CD34-positive cells provide an index of cerebrovascular function

Author(s): Taguchi A, Matsuyama T, Moriwaki H, Hayashi T, Hayashida K, et al.

Endothelial progenitor cells during cerebrovascular disease

Author(s): Ghani U, Shuaib A, Salam A, Nasir A, Shuaib U, et al.