Author(s): Huang Y, Huang J, Chen Y
Antimicrobial peptides (AMPs), with their extraordinary properties, such as broad-spectrum activity, rapid action and difficult development of resistance, have become promising molecules as new antibiotics. Despite their various mechanisms of action, the interaction of AMPs with the bacterial cell membrane is the key step for their mode of action. Moreover, it is generally accepted that the membrane is the primary target of most AMPs, and the interaction between AMPs and eukaryotic cell membranes (causing toxicity to host cells) limits their clinical application. Therefore, researchers are engaged in reforming or de novo designing AMPs as a 'single-edged sword' that contains high antimicrobial activity yet low cytotoxicity against eukaryotic cells. To improve the antimicrobial activity of AMPs, the relationship between the structure and function of AMPs has been rigorously pursued. In this review, we focus on the current knowledge of α-helical cationic antimicrobial peptides, one of the most common types of AMPs in nature.
Referred From: https://www.ncbi.nlm.nih.gov/pubmed/21203984
Author(s): Castro MS, Fontes W
Author(s): Strominger JL
Author(s): Zasloff M
Author(s): Riley MA, Chavan MA
Author(s): Cotter PD, Hill C, Ross RP
Author(s): Rodríguez JM, Martínez MI, Kok J
Author(s): da Rocha Pitta MG, da Rocha Pitta MG, Galdino SL
Author(s): Thomas S, Karnik S, Barai RS, Jayaraman VK, Idicula-Thomas S
Author(s): Brogden KA
Author(s): Yount NY, Bayer AS, Xiong YQ, Yeaman MR
Author(s): Kamysz W, Okroj M, Lukasiak J
Author(s): Hale JD, Hancock RE
Author(s): Nicolas P
Author(s): Bowdish DM, Davidson DJ, Lau YE, Lee K, Scott MG, et al.
Author(s): Brown KL, Hancock RE
Author(s): Easton DM, Nijnik A, Mayer ML, Hancock RE
Author(s): Lai Y, Gallo RL
Author(s): Guaní-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, Terán LM
Author(s): Hancock RE, Diamond G
Author(s): Hancock RE, Brown KL, Mookherjee N
Author(s): Bals R, Wilson JM
Author(s): Beauregard KA, Truong NT, Zhang H, Lin W, Beck G
Author(s): Haug T, Kjuul AK, Styrvold OB, Sandsdalen E, Olsen AM, et al.
Author(s): Ghanbari R, Ebrahimpour A, Abdul-Hamid A, Ismail A, Saari N
Author(s): Schillaci D, Arizza V, Parrinello N, Di Stefano V, Fanara S, et al.
Author(s): Huff T, M&uller CS, Otto AM, Netzker R, Hannappel E
Author(s): Tang YQ, Yeaman MR, Selsted ME
Author(s): Safer D, Chowrashi PK
Author(s): Saelee N, Noonin C, Nupan B, Junkunlo K, Phongdara A, et al.
Author(s): Zhang FX, Shao HL, Wang JX, Zhao XF
Author(s): Li C, Haug T, Styrvold OB, JØrgensen TØ, Stensvåg K
Author(s): Selsted ME, Ouellette AJ
Author(s): Daher KA, Selsted ME, Lehrer RI
Author(s): Mandal M, Nagaraj R
Author(s): Li C, Blencke HM, Smith LC, Karp MT, Stensvåg K
Author(s): Li C, Haug T, Moe MK, Styrvold OB, Stensvåg K
Author(s): Bjorn C, HÁkansson J, Myhrman E, Sjostrand V, Haug T, et al.
Author(s): Wilson M
Author(s): Parsek MR, Singh PK
Author(s): Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, et al.
Author(s): Obst U, Schwartz T, Volkmann H
Author(s): Horswill AR, Stoodley P, Stewart PS, Parsek MR
Author(s): Spoering AL, Gilmore MS
Author(s): Brogden NK, Brogden KA
Author(s): Hall-Stoodley L, Stoodley P
Author(s): Landini P, Antoniani D, Burgess JG, Nijland R
Author(s): Pieters RJ, Arnusch CJ, Breukink E
Author(s): Chan DI, Prenner EJ, Vogel HJ
Author(s): Schillaci D, Vitale M, Cusimano MG, Arizza V
Author(s): Hisamatsu K, Tsuda N, Goda S, Hatakeyama T