Antimicrobial agents from Licaria puchuri-major and their synergistic effect with polygodial

Author(s): Himejima M, Kubo I

Abstract

The resistance of the seeds of Licaria puchuri-major (Lauraceae) to decomposition in nature seems to be due largely to chemical defense, since its n-hexane extract contains antimicrobial principles in quantity, with a broad antimicrobial spectrum. In order to identify the active principles, the n-hexane extract was steam-distilled to yield a distillate and a residue. Subsequent bioassay indicated that the distillate retained the original broad antimicrobial activity, while the residue exhibited almost no activity. Gc-ms analysis showed that the distillate contained four phenolic compounds, seven monoterpenes, and one sesquiterpene. In contrast, the residue contained, almost exclusively, lauric acid. In the detailed antimicrobial assay with the pure compounds identified, most of them showed broad, but moderate, antimicrobial activity. Some of the components identified in the distillate were combined with polygodial [1] in order to enhance their antifungal activity. Unexpectedly, while polygodial did not synergize the antifungal activity of any of the compounds tested, the antifungal activity of polygodial was significantly increased when combined with aromatic substances such as anethole, safrole, or methyleugenol.

Similar Articles

Presence of polygodial and drimenol in Drimys population from Chile

Author(s): Concha DM, Vogel H, Yunes R, Razmilic I, Bresciani L, et al.

Spectral Assignments and Reference Data

Author(s): Rodriguez B, Zapata N, Medina P, Viñuela E

The synthesis of drimane sesquiterpenoids

Author(s): Jansen BJM, Groot AD

Antifeedant activity of some Polygodial Derivatives

Author(s): Osorio LM, Cortes M, Armstrong V, Bailen M, Coloma AG

Chondroprotective and anti-in?ammatory effects of sesamin

Author(s): Pothacharoen PP, Settakorn J, Poompimol W, Caterson B, Kongtawelert P

(2003). Antifungal Constituents Of The Stem Bark Of Brideliaretusa. Phytochem 62: 637-641.

Author(s): Jayasinghe L, Kumarihamy M, Jayarathna N, Udishani G, Bandara R, Et Al

Convenient synthesis of drimenol and its oxidation with selenium dioxide

Author(s): Kuchkova K, Aricu N, Dragalin P, Vlad P

Bioactive and other sesquiterpenoids from Porella cordeana

Author(s): Harrigan GG, Ahmad A, Baj N, Glass TE, Guaatilaka A, et al.

Sesquiterpenoids

Author(s): Appel HH, Conolly JD, Overton KH, Bond R

Microbial hydroxylation of natural drimenic lactones

Author(s): Maurs M, Azerad R,Corte M, Aranda G, Bertranne M, et al.

Chemical Constituents of Phacellaria compressaBenth

Author(s): Zhang XY, Li1 B, Zhou M, Yuan X, Zhang G

(-)-3ß-acetoxy drimenin from the leaves of Drimys winteri

Author(s): Sierra JR, Lopez J, Cortes M

Biological Activities of Lignoids from Amazon Myristicaceae Species: Virola michelii, V

Author(s): Morais S, Teixeira A, Torres Z, Nunomura S, Kanashiro EY, et al.

Method for the determination of minimum inhibitory concentration (MIC) by broth dilution of fermentative yeast

Author(s): Tuleda LR, Barchiesi F, Bille J, Chryssanthou E, Estrella MC, et al.

Bioactive metabolites from the fungus Nectria galligena, the main apple canker agent in Chile

Author(s): Gutierrez M, Theoduloz C, Rodriguez J, Lolas M. Schmeda-Hirschmann G

An update on bioactive plant lignans

Author(s): Saleem M, Kim HJ, Ali MS, Lee YS

Herbicidal Activity of Peumus boldus and Drimys winteri Essential Oils from Chile

Author(s): Verdeguer M, Rellán DG, Boira H, Pérez E, Gandolfo S, et al.