Author(s): Brogden KA
Antimicrobial peptides are an abundant and diverse group of molecules that are produced by many tissues and cell types in a variety of invertebrate, plant and animal species. Their amino acid composition, amphipathicity, cationic charge and size allow them to attach to and insert into membrane bilayers to form pores by 'barrel-stave', 'carpet' or 'toroidal-pore' mechanisms. Although these models are helpful for defining mechanisms of antimicrobial peptide activity, their relevance to how peptides damage and kill microorganisms still need to be clarified. Recently, there has been speculation that transmembrane pore formation is not the only mechanism of microbial killing. In fact several observations suggest that translocated peptides can alter cytoplasmic membrane septum formation, inhibit cell-wall synthesis, inhibit nucleic-acid synthesis, inhibit protein synthesis or inhibit enzymatic activity. In this review the different models of antimicrobial-peptide-induced pore formation and cell killing are presented.
Referred From: https://www.ncbi.nlm.nih.gov/pubmed/15703760
Author(s): Castro MS, Fontes W
Author(s): Strominger JL
Author(s): Zasloff M
Author(s): Riley MA, Chavan MA
Author(s): Cotter PD, Hill C, Ross RP
Author(s): Rodríguez JM, Martínez MI, Kok J
Author(s): da Rocha Pitta MG, da Rocha Pitta MG, Galdino SL
Author(s): Thomas S, Karnik S, Barai RS, Jayaraman VK, Idicula-Thomas S
Author(s): Yount NY, Bayer AS, Xiong YQ, Yeaman MR
Author(s): Kamysz W, Okroj M, Lukasiak J
Author(s): Hale JD, Hancock RE
Author(s): Nicolas P
Author(s): Bowdish DM, Davidson DJ, Lau YE, Lee K, Scott MG, et al.
Author(s): Brown KL, Hancock RE
Author(s): Easton DM, Nijnik A, Mayer ML, Hancock RE
Author(s): Lai Y, Gallo RL
Author(s): Guaní-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, Terán LM
Author(s): Hancock RE, Diamond G
Author(s): Hancock RE, Brown KL, Mookherjee N
Author(s): Bals R, Wilson JM
Author(s): Beauregard KA, Truong NT, Zhang H, Lin W, Beck G
Author(s): Haug T, Kjuul AK, Styrvold OB, Sandsdalen E, Olsen AM, et al.
Author(s): Ghanbari R, Ebrahimpour A, Abdul-Hamid A, Ismail A, Saari N
Author(s): Schillaci D, Arizza V, Parrinello N, Di Stefano V, Fanara S, et al.
Author(s): Huff T, M&uller CS, Otto AM, Netzker R, Hannappel E
Author(s): Tang YQ, Yeaman MR, Selsted ME
Author(s): Safer D, Chowrashi PK
Author(s): Saelee N, Noonin C, Nupan B, Junkunlo K, Phongdara A, et al.
Author(s): Zhang FX, Shao HL, Wang JX, Zhao XF
Author(s): Li C, Haug T, Styrvold OB, JØrgensen TØ, Stensvåg K
Author(s): Selsted ME, Ouellette AJ
Author(s): Daher KA, Selsted ME, Lehrer RI
Author(s): Mandal M, Nagaraj R
Author(s): Li C, Blencke HM, Smith LC, Karp MT, Stensvåg K
Author(s): Li C, Haug T, Moe MK, Styrvold OB, Stensvåg K
Author(s): Bjorn C, HÁkansson J, Myhrman E, Sjostrand V, Haug T, et al.
Author(s): Wilson M
Author(s): Parsek MR, Singh PK
Author(s): Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, et al.
Author(s): Obst U, Schwartz T, Volkmann H
Author(s): Horswill AR, Stoodley P, Stewart PS, Parsek MR
Author(s): Spoering AL, Gilmore MS
Author(s): Brogden NK, Brogden KA
Author(s): Huang Y, Huang J, Chen Y
Author(s): Hall-Stoodley L, Stoodley P
Author(s): Landini P, Antoniani D, Burgess JG, Nijland R
Author(s): Pieters RJ, Arnusch CJ, Breukink E
Author(s): Chan DI, Prenner EJ, Vogel HJ
Author(s): Schillaci D, Vitale M, Cusimano MG, Arizza V
Author(s): Hisamatsu K, Tsuda N, Goda S, Hatakeyama T