Berry temperature and solar radiation alter acylation, proportion, and concentration of anthocyanin in Merlot grapes

Author(s): Tarara JM, Lee J, Spayd SE, Scagel CF


Using a forced convection system, temperatures of Merlot grape clusters were monitored and controlled between veraison and harvest to produce a dynamic range of berry temperatures under field conditions in both sun-exposed and shaded fruit. Ten combinations of temperature and solar radiation exposure were used to quantify effects on phenolic profiles (anthocyanins and flavonol-glycosides) and on total concentrations of skin anthocyanin (TSA) in the fruit at commercial maturity. Exposure of berries to high temperature extremes for relatively short periods during ripening appears to alter the partitioning of anthocyanins between acylated and nonacylated forms and between dihydroxylated and trihydroxylated branches of the anthocyanin biosynthetic pathway. Specifically, among flavonol-glycosides, quercetin 3-glucoside increased with exposure to solar radiation. Low incident solar radiation alone appeared not to compromise total anthocyanin accumulation; rather, a combination of low light and high berry temperatures decreased TSA. Regardless of exposure to solar radiation, higher berry temperatures led to a higher concentration and a higher proportion of TSA comprised by malvidin-based anthocyanins, driven primarily by increases in the acylated derivatives. Under shade alone and under high temperature extremes in sunlit and shaded fruit, acylated anthocyanins represented a larger proportion of TSA than did nonacylated anthocyanins. At berry temperatures equivalent to those of shaded fruit, exposure to solar radiation decreased the proportion of TSA comprised by acylated forms of the five base anthocyanins and increased the proportion of TSA comprised by dihydroxylated anthocyanins. Results indicate a complex combined effect of solar radiation and berry temperature on anthocyanin composition, synergistic at moderate berry temperatures and potentially antagonistic at high temperature extremes.

Similar Articles

Introduction of flavonoids

Author(s): Bohm B

Gene expression profiling of key enzymes in azalea flower colour biosynthesis

Author(s): De Keyser E, De Riek J, Van Bockstaele E

Molecular characterisation of flower colour genes in azalea sports (Rhododendron simsii hybrids)

Author(s): De Schepper S, Debergh P, Van Bocktaele E, De Loose M

Light intensity affects the growth and flavonol biosynthesis of Ginkgo (Ginkgo biloba L

Author(s): Xu Y, Wang G, Cao F, Zhu C, Wang G, YA El-Kassaby

Characterization and expression of chalcone synthase gene from Ginkgo biloba

Author(s): Pang YZ, Shen GA, Wu WS, Liu XF, Lin J, et al.

Light-induced vegetative anthocyanin pigmentation in Petunia

Author(s): Albert NW, Lewis DH, Zhang H, Irving LJ, Jameson PE, et al.