beta-Thymosins, small acidic peptides with multiple functions

Author(s): Huff T, M&uller CS, Otto AM, Netzker R, Hannappel E

Abstract

The beta-thymosins are a family of highly conserved polar 5 kDa peptides originally thought to be thymic hormones. About 10 years ago, thymosin beta(4) as well as other members of this ubiquitous peptide family were identified as the main intracellular G-actin sequestering peptides, being present in high concentrations in almost every cell. beta-Thymosins bind monomeric actin in a 1:1 complex and act as actin buffers, preventing polymerization into actin filaments but supplying a pool of actin monomers when the cell needs filaments. Changes in the expression of beta-thymosins appear to be related to the differentiation of cells. Increased expression of beta-thymosins or even the synthesis of a beta-thymosin normally not expressed might promote metastasis possibly by increasing mobility of the cells. Thymosin beta(4) is detected outside of cells in blood plasma or in wound fluid. Several biological effects are attributed to thymosin beta(4), oxidized thymosin beta(4), or to the fragment, acSDKP, possibly generated from thymosin beta(4). Among the effects are induction of metallo-proteinases, chemotaxis, angiogenesis and inhibition of inflammation as well as the inhibition of bone marrow stem cell proliferation. However, nothing is known about the molecular mechanisms mediating the effects attributed to extracellular beta-thymosins.

Similar Articles

Plant defense and antimicrobial peptides

Author(s): Castro MS, Fontes W

Bacteriocins

Author(s): Riley MA, Chavan MA

Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria

Author(s): Rodríguez JM, Martínez MI, Kok J

Development of novel therapeutic drugs in humans from plant antimicrobial peptides

Author(s): da Rocha Pitta MG, da Rocha Pitta MG, Galdino SL

CAMP: a useful resource for research on antimicrobial peptides

Author(s): Thomas S, Karnik S, Barai RS, Jayaraman VK, Idicula-Thomas S

Advances in antimicrobial peptide immunobiology

Author(s): Yount NY, Bayer AS, Xiong YQ, Yeaman MR

Novel properties of antimicrobial peptides

Author(s): Kamysz W, Okroj M, Lukasiak J

Impact of LL-37 on anti-infective immunity

Author(s): Bowdish DM, Davidson DJ, Lau YE, Lee K, Scott MG, et al.

Cationic host defense (antimicrobial) peptides

Author(s): Brown KL, Hancock RE

Potential of immunomodulatory host defense peptides as novel anti-infectives

Author(s): Easton DM, Nijnik A, Mayer ML, Hancock RE

Antimicrobial peptides: general overview and clinical implications in human health and disease

Author(s): Guaní-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, Terán LM

Actinopyga lecanora Hydrolysates as Natural Antibacterial Agents

Author(s): Ghanbari R, Ebrahimpour A, Abdul-Hamid A, Ismail A, Saari N

Antimicrobial and antistaphylococcal biofilm activity from the sea urchin Paracentrotus lividus

Author(s): Schillaci D, Arizza V, Parrinello N, Di Stefano V, Fanara S, et al.

Antimicrobial peptides from human platelets

Author(s): Tang YQ, Yeaman MR, Selsted ME

ß-thymosins and hemocyte homeostasis in a crustacean

Author(s): Saelee N, Noonin C, Nupan B, Junkunlo K, Phongdara A, et al.

Direct inactivation of viruses by human granulocyte defensins

Author(s): Daher KA, Selsted ME, Lehrer RI

Staphylococcus aureus biofilms: properties, regulation, and roles in human disease

Author(s): Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, et al.

Quorum sensing and DNA release in bacterial biofilms

Author(s): Spoering AL, Gilmore MS

Evolving concepts in biofilm infections

Author(s): Hall-Stoodley L, Stoodley P

Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal

Author(s): Landini P, Antoniani D, Burgess JG, Nijland R

Membrane permeabilization by multivalent anti-microbial peptides

Author(s): Pieters RJ, Arnusch CJ, Breukink E