Decomposition rates and nutrients dynamics in small-diameter woody litter in four forest ecosystems in Washington, USA

Author(s):  Edmonds RL


Decomposition rates and nutrient dynamics in small-diameter woody litter (twigs, cones, and branches) were studied in four ecosystems in western Washington: high elevation Pacific silver fir (Abiesamabilis (Dougl.) Forbes) and low elevation Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco), western hemlock (Tsugaheterophylla (Raf.) Sarg.), and red alder (Alnusrubra Bong.). Conifer twigs decomposed faster (k = 0.14–0.24 year−1) than cones (k = 0.09–0.12 year−1) and branches (k = 0.03–0.11 year−1). Decomposition constants were related better to initial lignin/initial N ratios (r = −0.64) than initial lignin concentrations. N was generally the least mobile nutrient while K was the most mobile. Many nutrients were strongly immobilized in conifer fine woody litter, including N, Mg, Mn, and Ca. There was little immobilization of N in red alder branches. N release from decomposing woody litter appears to be controlled by a critical C/N ratio. This critical C/N ratio, however, was not constant and increased as the substrate decomposition rate increased.

Similar Articles

Decomposition in Terrestrial Ecosystems

Author(s): Swift MJ, Heal OW, Anderson JM

Litter decomposition rates in Canadian forests

Author(s): Moore TR, Trofymow JA, Taylor B, Camiré C, Duchesne L, et al.

Microbial and Enzymatic Degradation of Wood and Wood Component

Author(s):  Eriksson KE, Blanchette RA, Anderson P

Restoring Soil Fertility in Sub-Sahara Africa

Author(s): Bekunda M, Sanginga N, Woomer PL

Microbial and Enzymatic Degradation of Wood and Wood Component

Author(s): Eriksson KE, Blanchette RA, Anderson P

Standard Test Method for Ash in Wood

Author(s): ASTM International

Biorefinery of paulownia by autohydrolysis and soda-anthraquinone delignification process

Author(s): García-Moralesa M, Minerva FL, Zamudio AM, Alfaro A, de Alva HE, et al.

Valorization of Leucaenaleucocephala for energy and chemicals from auto-hydrolysis

Author(s): Feria MJ, Lopez F, Garcia JC, Pérez A, Zamudio MAM, et al.

Biomass production and chemical composition of Moringaoleifera under different planting densities and levels of nitrogen fertilization

Author(s): Mendieta-Araica B, Spörndly E, Reyes-Sànchez N, Salmeron-Miranda F, Halling M

Effect of chemical modifications caused by heat treatment on mechanical properties of Grevillearobusta wood

Author(s): Mburu F, Dumerçay S, Bocquet SF, Pétrissans M, Gérardin F

Investigation of the chemical modifications of beech wood lignin during heat treatment

Author(s): Brosse N, El Hage R, Chaouch M, Pétrissans M, Dumerçay S, et al.

La valorisation chimique du bois

Author(s): Dumon R, Gélus M