Discovery and development of anticancer agents from marine sponges: perspectives based on a chemistry-experimental therapeutics collaborative program

Author(s): Valeriote FA, Tenney K, Media J, Pietraszkiewicz H, Edelstein M, et al.

Abstract

A collaborative program was initiated in 1990 between the natural product chemistry laboratory of Dr. Phillip Crews at the University of California Santa Cruz and the experimental therapeutics laboratory of Dr. Fred Valeriote at the Henry Ford Hospital in Detroit. The program focused on the discovery and development of anticancer drugs from sponge extracts. A novel in vitro disk diffusion, solid tumor selective assay was used to examine 2,036 extracts from 683 individual sponges. The bioassay-directed fractionation discovery component led to the identification of active pure compounds from many of these sponges. In most cases, pure compound was prepared in sufficient quantities to both chemically identify the active compound(s) as well as pursue one or more of the biological development components. The latter included IC50, clonogenic survival-concentration exposure, maximum tolerated dose, pharmacokinetics and therapeutic assessment studies. Solid tumor selective compounds included fascaplysin and 10-bromofascaplysin (Fascaplysinopsis), neoamphimedine, 5-methoxyneoamphimedine and alpkinidine (Xestospongia), makaluvamine C and makaluvamine H (Zyzzya), psymberin (Psammocinia and Ircinia), and ethylplakortide Z and ethyldidehydroplakortide Z (Plakortis). These compounds or analogs thereof continue to have therapeutic potential.

Similar Articles

Producing drugs from marine sponges

Author(s): Belarbi el H, Contreras Gómez A, Chisti Y, García Camacho F, Molina Grima E

Marine sponges as pharmacy

Author(s): Sipkema D, Franssen MC, Osinga R, Tramper J, Wijffels RH

Anti-biofilm compounds derived from marine sponges

Author(s): Stowe SD, Richards JJ, Tucker AT, Thompson R, Melander C, et al.

Biogeography of sponge chemical ecology: comparisons of tropical and temperate defenses

Author(s): Becerro MA, Thacker RW, Turon X, Uriz MJ, Paul VJ

Porifera: Sponges

Author(s): Lavrov D

Drug development from marine natural products

Author(s): Molinski TF, Dalisay DS, Lievens SL, Saludes JP

Marine natural products as anticancer drugs

Author(s): Simmons TL, Andrianasolo E, McPhail K, Flatt P, Gerwick WH

Approaches to identify, clone, and express symbiont bioactive metabolite genes

Author(s): Hildebrand M, Waggoner LE, Lim GE, Sharp KH, Ridley CP, et al.

The value of natural products to future pharmaceutical discovery

Author(s): Baker DD, Chu M, Oza U, Rajgarhia V

Antiviral lead compounds from marine sponges

Author(s): Sagar S, Kaur M, Minneman KP

Current status on natural products with antitumor activity from Brazilian marine sponges

Author(s): Frota MJ, Silva RB, Mothes B, Henriques AT, Moreira JC

Marine natural products

Author(s): Blunt JW, Copp BR, Keyzers RA, Munro MH, Prinsep MR

Bioactive indole derivatives from the South Pacific marine sponges Rhopaloeides odorabile and Hyrtios sp

Author(s): Longeon A, Copp BR, Quévrain E, Roué M, Kientz B, et al.

Isolation of steroidal glycosides from the Caribbean sponge Pandaros acanthifolium

Author(s): Berrué F, McCulloch MW, Boland P, Hart S, Harper MK, et al.

The odyssey of marine pharmaceuticals: a current pipeline perspective

Author(s): Mayer AM, Glaser KB, Cuevas C, Jacobs RS, Kem W, et al.

Monanchocidin: a new apoptosis-inducing polycyclic guanidine alkaloid from the marine sponge Monanchora pulchra

Author(s): Guzii AG, Makarieva TN, Denisenko VA, Dmitrenok PS, Kuzmich AS, et al.

The marine compound spongistatin 1 targets pancreatic tumor progression and metastasis

Author(s): Rothmeier AS, Schneiders UM, Wiedmann RM, Ischenko I, Bruns CJ, et al.

New lysophosphatidylcholines and monoglycerides from the marine sponge Stelletta sp

Author(s): Zhao Q, Mansoor TA, Hong J, Lee CO, Im KS, et al.