Effect of ginsam, vinegar extract from Panax ginseng, on body weight and glucose homeostasis in an obese insulin-resistant rat model

Author(s): Lim S, Yoon JW, Choi SH, Cho BJ, Kim JT, et al.

Abstract

Extracts of ginseng species show antihyperglycemic activity. We evaluated the antihyperglycemic and antiobesity effects of ginsam, a component of Panax ginseng produced by vinegar extraction, which is enriched in the ginsenoside Rg3. Otsuka Long-Evans Tokushima Fatty rats, an obese insulin-resistant rat model, were assigned into 1 of 3 groups (n = 8 each): controls (isotonic sodium chloride solution, 5 mL/d), rats given 300 mg/(kg d) ginsam, and rats given 500 mg/(kg d) ginsam. An intraperitoneal 2-hour glucose tolerance test was performed at the end of the 6-week treatment. After 8 weeks, body and liver weights, visceral fat measured by computed tomography, and fasting glucose and insulin concentrations and lipid profiles were recorded. Insulin-resistant rats treated with ginsam had lower fasting and postprandial glucose concentrations compared with vehicle-treated rats. Importantly, overall glucose excursion during the intraperitoneal 2-hour glucose tolerance test decreased by 21.5% (P < .01) in the treated rats, indicating improved glucose tolerance. Plasma insulin concentration was significantly lower in ginsam-treated rats. These changes may be related to increased glucose transporter 4 expression in skeletal muscle. Interestingly, when the data from both ginsam-treated groups were combined, body weight was 60% lower in the ginsam-treated rats than in the controls (P < .01). Liver weight and serum alanine aminotransferase concentrations were also lower in the ginsam-treated rats. These effects were associated with increased peroxisome proliferator-activated receptor gamma expression and adenosine monophosphate-activated protein kinase phosphorylation in liver and muscle. Our data suggest that ginsam has distinct beneficial effects on glucose metabolism and body weight control in an obese animal model of insulin resistance by changing the expression of genes involved in glucose and fatty acid metabolism.

Similar Articles

Triglyceride accumulation protects against fatty acid-induced lipotoxicity

Author(s): Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr, et al.

Remodeling of lipid droplets during lipolysis and growth in adipocytes

Author(s): Paar M, Jüngst C, Steiner NA, Magnes C, Sinner F, et al.

Activation of PPARγ and δ by dietary punicic acid ameliorates intestinal inflammation in mice

Author(s): Bassaganya-Riera J, DiGuardo M, Climent M, Vives C, Carbo A, et al.

Pomegranate: a fruit that ameliorates metabolic syndrome

Author(s): Medjakovic S, Jungbauer A

Antiobesity effects of wild ginseng (Panax ginseng C

Author(s): Mollah ML, Kim GS, Moon HK, Chung SK, Cheon YP, et al.

Antiobesity effect of oil extract of ginseng

Author(s): Kim HJ, Kang HJ, Seo JY, Lee CH, Kim YS, et al.

Activating effect of momordin, extract of bitter melon (Momordica Charantia L

Author(s): Sasa M, Inoue I, Shinoda Y, Takahashi S, Seo M, et al.

Hypoglycemic effects of crude polysaccharide from Purslane

Author(s): Gong F, Li F, Zhang L, Li J, Zhang Z, et al.

Effects of Portulaca oleracea L

Author(s): El-Sayed M

Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants

Author(s): P S, Zinjarde SS, Bhargava SY, Kumar AR

Cinnamon in glycaemic control: Systematic review and meta analysis

Author(s): Akilen R, Tsiami A, Devendra D, Robinson N

Effect of cinnamon on glucose control and lipid parameters

Author(s): Baker WL, Gutierrez-Williams G, White CM, Kluger J, Coleman CI

Cinnamon for diabetes mellitus

Author(s): Leach MJ, Kumar S

Postlipolytic insulin-dependent remodeling of micro lipid droplets in adipocytes

Author(s): Ariotti N, Murphy S, Hamilton NA, Wu L, Green K, et al.

Fat-specific protein 27 regulates storage of triacylglycerol

Author(s): Keller P, Petrie JT, De Rose P, Gerin I, Wright WS, et al.

Fat-specific protein 27, a novel lipid droplet protein that enhances triglyceride storage

Author(s): Puri V, Konda S, Ranjit S, Aouadi M, Chawla A, et al.

Pomegranate seed oil, a rich source of punicic acid, prevents diet-induced obesity and insulin resistance in mice

Author(s): Vroegrijk IO, van Diepen JA, van den Berg S, Westbroek I, Keizer H, et al.