Effects of quercetin on insulin-like growth factors (IGFs) and their binding protein-3 (IGFBP-3) secretion and induction of apoptosis in human prostate cancer cells

Author(s): Vijayababu MR, Arunkumar A, Kanagaraj P, Arunakaran J


Background: Quercetin, the predominant flavonoid, has been reported to lower the risk of several cancers. This flavonoid found in onion, grapes, green vegetables, etc. has been shown to possess potent antiproliferative effects against various malignant cells. This study was designed to investigate its effects on insulin-like growth factors (IGFs) and their binding protein-3 (IGFBP-3) proteins secretion and also apoptosis induction in the human prostate cancer cell line, PC-3.

Methods: We evaluated the secretion of IGF-I, -II and IGFBP-3 in quercetin treated cells by immunoradiometric (IRMA) method. Apoptosis was studied in quercetin treated cells by TUNEL and DNA fragmentation. Protein expressions of Bcl-2, Bcl-xL, Bax and caspase-3 were studied by western blot.

Results: At a dose of 100 microM concentration, we observed increased IGFBP-3 accumulation in PC-3 cells conditioned medium with a dose dependent increase with 2 fold over a base line, and significantly reduced the both IGF-I and IGF-II levels. Apoptosis induction was also confirmed by TUNEL assay. Bcl-2 and Bcl-xL protein expressions were significantly decreased and Bax and caspase-3 were increased.

Conclusion: These results suggest that the decreased level of IGFs could be due to the increased levels of IGFBP-3, because of the high binding affinity towards IGFs, thereby decreasing the cell proliferation. The increased level of IGFBP-3 was associated with increased pro-apoptotic proteins and apoptosis in response to quercetin, suggesting it may be a p53-independent effector of apoptosis in prostate cancer cells.

Similar Articles

Nitric oxide represses inhibitory kappaB kinase through S-nitrosylation

Author(s): Reynaert NL, Ckless K, Korn SH, Vos N, Guala AS, et al.

Signaling by distinct classes of phosphoinositide 3-kinases

Author(s): Vanhaesebroeck B, Waterfield MD

Activation of Akt/protein kinase B overcomes a G(2)/m cell cycle checkpoint induced by DNA damage

Author(s): Kandel ES, Skeen J, Majewski N, Di Cristofano A, Pandolfi PP, et al.

Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin

Author(s): Choi JA, Kim JY, Lee JY, Kang CM, Kwon HJ, et al.

Protein measurement with the Folin phenol reagent

Author(s): Lowry OH, Rosebrough NJ, Farr AL, Randall RJ

Garlic compound, diallyl disulfide induces cell cycle arrest in prostate cancer cell line PC-3

Author(s): Arunkumar A, Vijayababu MR, Srinivasan N, Aruldhas MM, Arunakaran J