Estrogen-like activity of ginsenoside Rg1 derived from Panax notoginseng

Author(s): Chan RY, Chen WF, Dong A, Guo D, Wong MS

Abstract

Ginsenosides have demonstrated pharmacological effects in the central nervous, cardiovascular, and endocrine systems. We hypothesize that ginsenosides might mediate some of their actions by binding to the estrogen receptor, as they share many of the protective actions of estrogen in various physiological systems. The present study is aimed to determine whether ginsenoside Rg1 can act like an estrogen analog in stimulating human breast cancer cell growth as well as in the activation of estrogen response element-luciferase activity in HeLa cell. Rg1, but not its aglycone, stimulates [methyl-(3)H] thymidine incorporation in estrogen receptor-positive MCF-7 in a dose-dependent manner (10(-15)-10(-7) M). The stimulation of MCF-7 cell proliferation by 3 x 10(-13) M Rg1 can be blocked by 10(-6) M of the estrogen antagonist ICI 182780. Moreover, Rg1 stimulates estrogen response element-luciferase reporter gene activity in HeLa cells with an optimal dose of 3 x 10(-10) M. Such stimulation can also be blocked by 10(-6) M ICI 182780. In addition, Rg1 has no effect on [methyl-(3)H]thymidine incorporation in estrogen receptor-negative human breast cancer cells (MDA-MB-231). Furthermore, Rg1 failed to displace the specific binding of [(3)H]17 beta-estradiol to MCF-7 cell lysates, suggesting that no direct interaction of Rg1 with estrogen receptor is needed for its estrogenic action. Our results indicate that ginsenosides Rg1 has estrogen-like activity and should be classified as a novel class of potent phytoestrogen.

Similar Articles

Interactions between traditional Chinese medicines and Western therapeutics

Author(s): Chan E, Tan M, Xin J, Sudarsanam S, Johnson DE

The Role of Coenzyme Q10 in Heart Failure

Author(s): Weant KA, Smith KM

The impact of coenzyme Q10 on systolic function in patients with chronic heart failure

Author(s): Sander S, Coleman CI, Patel AA, Kluger J, White CM

Studies on the constituents of Japanese and Chinese crude drugs

Author(s): Shibata S, Fujita M, Itokawa H, Tanaka O, Ishii T

[Chemical studies of crude drugs (1)

Author(s): Kitagawa I, Yoshikawa M, Yoshihara M, Hayashi T, Taniyama T

Apoptotic effects of ginsenoside Rh2 on human malignant melanoma A375-S2 cells

Author(s): Fei XF, Wang BX, Tashiro S, Li TJ, Ma JS, et al.

Effects of ginsenosides Rg3 and Rh2 on the proliferation of prostate cancer cells

Author(s): Kim HS, Lee EH, Ko SR, Choi KJ, Park JH, et al.

Rh2 synergistically enhances paclitaxel or mitoxantrone in prostate cancer models

Author(s): Xie X, Eberding A, Madera C, Fazli L, Jia W, et al.

Liquid chromatographic determination of less polar ginsenosides in processed ginseng

Author(s): Kwon SW, Han SB, Park IH, Kim JM, Park MK, et al.

[Determination of ginsenoside Rd and its metabolites in rat urine by LC-MS]

Author(s): Yang L, Xu SJ, Zeng X, Liu YM, Deng SG, et al.

Determination of Ginsenoside Rh2 in Enzyme Conversion by HPLC

Author(s): Jiang L, Zhao S, Ya L, Li J