Isolation and identification of higher plant agents active in antimutagenic assay systems: Glycyrrhiza glabra

Author(s): Mitscher LA, Drake S, Gollapudi SR, Harris JA, Shankel DM

Abstract

The reproduction and maintenance of identity of species are biological imperatives, and it is not surprising that there exist mechanisms to minimize or repair the deleterious influence of noxious chemicals in the environment on DNA. Animals tend to defend themselves through the use of enzymes which intercept aggressive chemicals and convert them to less dangerous substances. Animal cells also contain a variety of preformed smaller molecular weight chemicals which can react with oxidized species and free radicals and convert them to less virulent electrophiles (1). It is now becoming clear that higher plants also contain a variety of preformed secondary metabolites which represent a structurally diverse array of antimutagenic and desmutagenic compounds (6). Many, but not all, would appear to be enzyme inhibitors or antioxidants. Since a number of plant constitu-ents are mutagenic (18), it seems reasonable that higher plants should also contain molecules capable of antimutagenicity so as to survive the effects of their own metabolism. Study of such substances has the potential of revealing much interesting molecular detail about the processes of mutagenesis and antimutagenesis. A rather more distant hope is that such substances might be safe enough to provide protection for individuals perceived to be at risk. This would appear to be the case with a number of minor anticarcinogenic constituents consumed as part of our diet (4, 20).

Similar Articles

Medicinal plants in therapy

Author(s): Farnsworth NR, Akerele O, Bingel AS, Soejarto DD, Guo Z

Burger's medicinal chemistry and drug discovery

Author(s): James F, Kerwin Jr.

Antimalarial drug resistance

Author(s): White NJ

Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial

Author(s): Dondorp A, Nosten F, Stepniewska K, Day N, White N; South East Asian Quinine Artesunate Malaria Trial (SEAQUAMAT) group

Artesunate versus quinine for severe falciparum malaria

Author(s): Woodrow CJ, Planche T, Krishna S

Artemisinins: activities and actions

Author(s): Haynes RK, Krishna S

Artemisone--a highly active antimalarial drug of the artemisinin class

Author(s): Haynes RK, Fugmann B, Stetter J, Rieckmann K, Heilmann HD, et al.

A single amino acid residue can determine the sensitivity of SERCAs to artemisinins

Author(s): Uhlemann AC, Cameron A, Eckstein-Ludwig U, Fischbarg J, Iserovich P, et al.

Identification of an antimalarial synthetic trioxolane drug development candidate

Author(s): Vennerstrom JL, Arbe-Barnes S, Brun R, Charman SA, Chiu FC, et al.

Synthetic studies towards halichondrins: synthesis of the C

Author(s): Aicher TD, Buszek KR, Fang FG, Forsyth CJ, Jung SH, et al.

Enabling high-throughput discovery

Author(s): Vaschetto M, Weissbrod T, Bodle D, Güner O