Litter decomposition rates in Canadian forests

Author(s): Moore TR, Trofymow JA, Taylor B, Camiré C, Duchesne L, et al.

Abstract

The effect of litter quality and climate on the rate of decomposition of plant tissues was examined by the measurement of mass remaining after 3 years’ exposure of 11 litter types placed at 18 forest sites across Canada. Amongst sites, mass remaining was strongly related to mean annual temperature and precipitation and amongst litter types the ratio of Klason lignin to nitrogen in the initial tissue was the most important litter quality variable. When combined into a multiple regression, mean annual temperature, mean annual precipitation and Klason lignin:nitrogen ratio explained 73% of the variance in mass remaining for all sites and tissues. Using three doubled CO2 GCM climate change scenarios for four Canadian regions, these relationships were used to predict increases in decomposition rate of 4–7% of contemporary rates (based on mass remaining after 3 years), because of increased temperature and precipitation. This increase may be partially offset by evidence that plants growing under elevated atmospheric CO2 concentrations produce litter with high lignin:nitrogen ratios which slows the rate of decomposition, but this change will be small compared to the increased rate of decomposition derived from climatic changes.

Similar Articles

Decomposition in Terrestrial Ecosystems

Author(s): Swift MJ, Heal OW, Anderson JM

Microbial and Enzymatic Degradation of Wood and Wood Component

Author(s):  Eriksson KE, Blanchette RA, Anderson P

Restoring Soil Fertility in Sub-Sahara Africa

Author(s): Bekunda M, Sanginga N, Woomer PL

Microbial and Enzymatic Degradation of Wood and Wood Component

Author(s): Eriksson KE, Blanchette RA, Anderson P

Standard Test Method for Ash in Wood

Author(s): ASTM International

Biorefinery of paulownia by autohydrolysis and soda-anthraquinone delignification process

Author(s): García-Moralesa M, Minerva FL, Zamudio AM, Alfaro A, de Alva HE, et al.

Valorization of Leucaenaleucocephala for energy and chemicals from auto-hydrolysis

Author(s): Feria MJ, Lopez F, Garcia JC, Pérez A, Zamudio MAM, et al.

Biomass production and chemical composition of Moringaoleifera under different planting densities and levels of nitrogen fertilization

Author(s): Mendieta-Araica B, Spörndly E, Reyes-Sànchez N, Salmeron-Miranda F, Halling M

Effect of chemical modifications caused by heat treatment on mechanical properties of Grevillearobusta wood

Author(s): Mburu F, Dumerçay S, Bocquet SF, Pétrissans M, Gérardin F

Investigation of the chemical modifications of beech wood lignin during heat treatment

Author(s): Brosse N, El Hage R, Chaouch M, Pétrissans M, Dumerçay S, et al.

La valorisation chimique du bois

Author(s): Dumon R, Gélus M