Membrane-related effects underlying the biological activity of the anthraquinones emodin and barbaloin

Author(s): Alves DS, Pérez-Fons L, Estepa A, Micol V


Commercial plant extracts containing anthraquinones are being increasingly used for cosmetics, food and pharmaceuticals due to their wide therapeutic and pharmacological properties. In this work, the interaction with model membranes of two representative 1,8-dihydroxyanthraquinones, barbaloin (Aloe) and emodin (Rheum, Polygonum), has been studied in order to explain their effects in biological membranes. Emodin showed a higher affinity for phospholipid membranes than barbaloin did, and was more effective in weakening hydrophobic interactions between hydrocarbon chains in phospholipid bilayers. Whereas emodin induced the formation of hexagonal-H(II) phase, barbaloin stabilized lamellar structures. Barbaloin promoted the formation of gel-fluid intermediate structures in phosphatidylglycerol membranes at physiological pH and ionic strength values. It is proposed that emodin's chromophore group is located at the upper half of the membrane, whereas barbaloin's one is in a deeper position but having its glucopyranosyl moiety near the phospholipid/water interface. Moreover, membrane disruption by emodin or barbaloin showed specificity for the two major phospholipids present in bacterial membranes, phosphatidylethanolamine and phosphatidylglycerol. In order to relate their strong effects on membranes to their biological activity, the capacity of these compounds to inhibit the infectivity of the viral haemorrhagic septicaemia rhabdovirus (VHSV), a negative RNA enveloped virus, or the growth of Escherichia coli was tested. Anthraquinone-loaded liposomes showed a strong antimicrobial activity whereas these compounds in their free form did not. Both anthraquinones showed antiviral activity but only emodin was a virucidal agent. In conclusion, a molecular mechanism based on the effect of these compounds on the structure of biological membranes is proposed to account for their multiple biological activities. Anthraquinone-loaded liposomes may suppose an alternative for antimicrobial, pharmaceutical or cosmetic applications.

Similar Articles

HPLC analysis of emodin in serum, herbs and Chinese herbal prescriptions

Author(s): Liang JW, Hsiu SL, Huang HC, Lee-Chao PD

Biochemical study of Chinese rhubarb

Author(s): Zhou XM, Chen QH

Human malaria parasites in continuous culture

Author(s): Trager W, Jensen JB

Antimalarial interaction of quinine and quinidine with clarithromycin

Author(s): Pandey SK, Dwivedi H, Singh S, Siddiqui WA, Tripathi R

Carboncarbon alkylation of amines and ammonium salts

Author(s): Brewster JH, Eliel EL

Synthesis of amino derivatives of 1, 6 8-trihydroxy-3-methyl-9, 10-anthraquinone

Author(s): Kintsurashvili LA, Sikharulidze MI, Buyanov VN, Turabelidze DG