Method for the determination of minimum inhibitory concentration (MIC) by broth dilution of fermentative yeast

Author(s): Tuleda LR, Barchiesi F, Bille J, Chryssanthou E, Estrella MC, et al.

Abstract

Dilution methods are used to determine the minimum inhibitory concentrations (MICs) of antimicrobial agents and are the reference methods for antimicrobial susceptibility testing. In dilution tests, microorganisms are tested for their ability to produce visible growth in microtitration plate wells of broth (broth microdilution) containing serial dilutions of the antimicrobial agents. The MIC is defined as the lowest concentration of an antimicrobial agent that inhibits the growth of a microorganism. The method described in this document is intended for testing yeasts that cause clinically significant infections (primarily Candida species). This standard encompasses only those yeasts that are able to ferment glucose. Thus, testing the susceptibility of nonfermentative yeasts such as Cryptococcus neoformans var. neoformans cannot be determined by the current procedure nor is the methodology suitable for the yeast forms of dimorphic fungi.

Similar Articles

Presence of polygodial and drimenol in Drimys population from Chile

Author(s): Concha DM, Vogel H, Yunes R, Razmilic I, Bresciani L, et al.

Spectral Assignments and Reference Data

Author(s): Rodriguez B, Zapata N, Medina P, Viñuela E

The synthesis of drimane sesquiterpenoids

Author(s): Jansen BJM, Groot AD

Antifeedant activity of some Polygodial Derivatives

Author(s): Osorio LM, Cortes M, Armstrong V, Bailen M, Coloma AG

Chondroprotective and anti-in?ammatory effects of sesamin

Author(s): Pothacharoen PP, Settakorn J, Poompimol W, Caterson B, Kongtawelert P

(2003). Antifungal Constituents Of The Stem Bark Of Brideliaretusa. Phytochem 62: 637-641.

Author(s): Jayasinghe L, Kumarihamy M, Jayarathna N, Udishani G, Bandara R, Et Al

Convenient synthesis of drimenol and its oxidation with selenium dioxide

Author(s): Kuchkova K, Aricu N, Dragalin P, Vlad P

Bioactive and other sesquiterpenoids from Porella cordeana

Author(s): Harrigan GG, Ahmad A, Baj N, Glass TE, Guaatilaka A, et al.

Sesquiterpenoids

Author(s): Appel HH, Conolly JD, Overton KH, Bond R

Microbial hydroxylation of natural drimenic lactones

Author(s): Maurs M, Azerad R,Corte M, Aranda G, Bertranne M, et al.

Chemical Constituents of Phacellaria compressaBenth

Author(s): Zhang XY, Li1 B, Zhou M, Yuan X, Zhang G

(-)-3ß-acetoxy drimenin from the leaves of Drimys winteri

Author(s): Sierra JR, Lopez J, Cortes M

Biological Activities of Lignoids from Amazon Myristicaceae Species: Virola michelii, V

Author(s): Morais S, Teixeira A, Torres Z, Nunomura S, Kanashiro EY, et al.

Bioactive metabolites from the fungus Nectria galligena, the main apple canker agent in Chile

Author(s): Gutierrez M, Theoduloz C, Rodriguez J, Lolas M. Schmeda-Hirschmann G

An update on bioactive plant lignans

Author(s): Saleem M, Kim HJ, Ali MS, Lee YS

Herbicidal Activity of Peumus boldus and Drimys winteri Essential Oils from Chile

Author(s): Verdeguer M, Rellán DG, Boira H, Pérez E, Gandolfo S, et al.