Mitra AK Mechanisms of drug resistance in cancer chemotherapy: coordinated role and regulation of efflux transporters and metabolizing enzymes

Author(s): Vadlapatla RK, Vadlapudi AD, Pal D

Abstract

Cancer remains one of the major leading causes of death worldwide. Acquisition of multidrug resistance (MDR) remains a major impediment to successful chemotherapy. As the name implies, MDR is not limited only to one drug but often associated to structurally and functionally unrelated chemotherapeutics. Extensive research and investigations have identified several mechanisms underlying the development of MDR. This process of drug resistance is considered to be multifactorial including decreased drug accumulation, increased efflux, increased biotransformation, drug compartmentalization, modification of drug targets and defects in cellular pathways. In the first part of the review, these pharmacokinetic and pharmacodynamic mechanisms have been described in brief. Although the pathways can act independently, they are more often intertwined. Of the various mechanisms involved, up-regulation of efflux transporters and metabolizing enzymes constitute a major resistance phenotype. This review also provides a general biological overview of important efflux transporters and metabolizing enzymes involved in MDR. Further, synergistic action between efflux transporters and metabolizing enzymes leading to MDR could possibly arise due to two different factors; overlapping substrate specificity and coordinated regulation of their expression. The expression of efflux transporters and metabolizing enzymes is governed by nuclear receptors, mainly pregnane X receptor (PXR). The pharmacological role of PXR and advances in the development of PXR antagonists to overcome MDR are outlined.

Similar Articles

Medicinal plants and phytomedicines

Author(s): Briskin DP

New natural products as new leads for antibacterial drug discovery

Author(s): Brown DG, T Lister, TL May-Dracka

Amazonian plant natural products: perspectives for discovery of new antimalarial drug leads

Author(s): Pohlit AM, Souza Lima RB,Frausin G,Rocha e SilvaLF,Pinto Lopes SC, et al.

Natural products: promising resources for cancer drug discovery

Author(s): Mondal S, Bandyopadhyay S, Ghosh MK, Mukhopadhyay S, Roy S, et al.

Plant antitumor agents

Author(s): Wall ME, MC Wani, CE Cook, KH Palmer, AT McPhail, et al.

Plant antitumor agents

Author(s): Wani MC, Taylor HL, WallME, Coggon P, McPhail AT, et al.

3D-QSAR study of 20 (S)-camptothecin analogs

Author(s): Lu AJ, Zhang ZS, Zheng MY, Zou HJ, Luo XM, et al.

Plants used against cancer

Author(s): Hartwell JL

Plants used against cancer

Author(s): Hartwell JL

Screening plants for antitumor activity

Author(s): Perdue RE Jr, Abbott BJ, Hartwell JL

Antineoplastic components of marine animals

Author(s): Pettit GR, Day JF, Hartwell JL, Wood HB

Studies on Camptothecin

Author(s): Horwitz SB, Chang CK, Grollman AP

Grollman, Antiviral action of camptothecin

Author(s): Horwitz SB, Chang CK, Grollman AP

DNA topoisomerase I-mediated DNA cleavage and cytotoxicity of camptothecin analogues

Author(s): Hsiang YH, Liu LF, Wall ME, Wani MC, Nicholas AW

Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA

Author(s): Redinbo MR, Stewart L, Kuhn P, Champoux JJ, Hol WG

Mechanism of action of camptothecin

Author(s): Liu LF, Desai SD, Li TK, Mao Y, Sun M, et al.

Antitumour drugs impede DNA uncoiling by topoisomerase I

Author(s): Koster DA, Palle K, Bot ES, Bjornsti MA, Dekker NH

Phase I and pharmacologic study of topotecan: a novel topoisomerase I inhibitor

Author(s): Rowinsky EK, Grochow LB, Hendricks CB, Ettinger DS, Forastiere AA, et al.

Topotecan versus paclitaxel for the treatment of recurrent epithelial ovarian cancer

Author(s): ten Bokkel Huinink W, Gore M, Carmichael J, Gordon A, Malfetano J, et al.

Phase I clinical trial of topotecan and pegylated liposomal doxorubicin

Author(s): Garcia AA, Roman L, Muderspach L, O'meara A, Facio G, et al.

Preclinical evaluation of the anticancer activity and toxicity of 9-nitro-20(S)-camptothecin (Rubitecan)

Author(s): Giovanella BC, Stehlin JS, Hinz HR, Kozielski AJ, Harris NJ, etal.

A phase II trial with RFS2000 (rubitecan) in patients with advanced non-small cell lung cancer

Author(s): Baka S, Ranson M, Lorigan P, Danson S, Linton K, et al.

Phase II trial of oral rubitecan in previously treated pancreatic cancer patients

Author(s): Burris HA, Rivkin S, Reynolds R, Harris J, Wax A, et al.

Anti-apoptotic mechanisms of drug resistance in cancer

Author(s): Wilson TR, Johnston PG, Longley DB