Author(s): Singh K, Kumar S, Rani A, Gulati A, Ahuja PS
Phenylalanine ammonia-lyase and cinnamate 4-hydroxylase are important enzymes in allocating significant amounts of carbon from phenylalanine into the biosynthesis of several important secondary metabolites. Tea is an important crop of commerce known for its beverage and medicinally important flavonoid compounds, mainly catechins. As metabolic flux for the operation of the flavonoid pathway is maintained through the activities of PAL and C4H, thus, catechins biosynthesis in tea is critically dependent on the products of these enzymes. We examined the expression of PAL and C4H. Sequence encoding CsPAL was isolated from tea by polymerase chain reaction using sequence information available at the NCBI GenBank. Sequence encoding C4H was isolated from tea by using differential display of mRNA and rapid amplification of cDNA ends technology. CsC4H (AY641731) comprised of 1,352 bp full-length cDNA with open reading frame of 1,173 bp encoding 390 amino acids. Catechin contents decreased in response to drought stress (DS), abscisic acid (ABA), and gibberellic acid (GA(3)) treatments but increased in response to wounding. The expression of CsPAL and CsC4H showed the same behavior under the above treatments and was also in accordance with the catechin contents. A positive correlation between catechin contents and gene expression suggested a critical role of the enzymes in catechins biosynthesis and a crosstalk between phenylpropanoid and flavonoid pathways.
Referred From: https://www.ncbi.nlm.nih.gov/pubmed/18679731
Author(s): Bohm B
Author(s): Winkel-Shirley B
Author(s): Rice-Evans CA, Miller NJ, Paganga G
Author(s): Christie PJ, Alfenito MR, Walbot V
Author(s): Kubasek WL, Ausubel FM, Shirley BW
Author(s): Castellarin SD, Matthews MA, Di Gaspero G, Gambetta GA
Author(s): Azuma A, Yakushiji H, Koshita Y, Kobayashi S
Author(s): Sparvoli F, Martin C, Scienza A, Gavazzi G, Tonelli C
Author(s): De Keyser E, De Riek J, Van Bockstaele E
Author(s): De Schepper S, Debergh P, Van Bocktaele E, De Loose M
Author(s): Jaakola L, Määttä K, Pirttilä AM, Törrönen R, Kärenlampi S, et al.
Author(s): Polashock JJ, Griesbach RJ, Sullivan RF, Vorsa N
Author(s): Hua C, Linling L, Feng X, Yan W, Honghui Y, et al.
Author(s): vanBeek TA
Author(s): Smith JV, Luo Y
Author(s): Leng P, Su S, Li Y, Wang S, Jiang X
Author(s): Xu Y, Wang G, Cao F, Zhu C, Wang G, YA El-Kassaby
Author(s): Pang YZ, Shen GA, Wu WS, Liu XF, Lin J, et al.
Author(s): Xu F, Cai R, Cheng SY, Du HW, Wang Y, et al.
Author(s): Jaakola L, Hohtola A
Author(s): Hernández I, Alegre L, Munné-Bosch S
Author(s): Albert NW, Lewis DH, Zhang H, Irving LJ, Jameson PE, et al.
Author(s): Olsen KM, Slimestad R, Lea US, Brede C, Løvdal T, et al.
Author(s): Steyn WJ, Wand SJ, Jacobs G, Rosecrance RC, Roberts SC
Author(s): Tarara JM, Lee J, Spayd SE, Scagel CF
Author(s): Yamamoto GN, Mori K, Numata M, Koyama K, Kitayama M
Author(s): Tattini M, Galardi C, Pinelli P, Massai R, Remorini D, et al.
Author(s): Lillo C, Lea US, Ruoff P
Author(s): Leyva A, Jarillo JA, Salinas J, Martinez-Zapater JM
Author(s): Løvdal T, Olsen KM, Slimestad R, Verheul M, Lillo C
Author(s): Yuan Y, Liu Y, Wu C, Chen S, Wang Z, et al.