Polyphenolic antioxidant (-)-epigallocatechin-3-gallate from green tea reduces UVB-induced inflammatory responses and infiltration of leukocytes in human skin

Author(s): Katiyar SK, Matsui MS, Elmets CA, Mukhtar H

Abstract

Identification of natural products capable of affording protection against UVB radiation-induced inflammatory responses and generation of oxidative stress may have important human health implications. The UVB exposure-induced skin injury and oxidative stress has been associated with a variety of skin disease conditions including photoaging, inflammation and cancer. Tea is a popular beverage consumed worldwide. In several mouse skin models, topical application as well as oral consumption of green tea has been shown to afford protection against chemical and UVB-induced carcinogenesis and inflammatory responses. In the present study, we investigated in human skin, whether topical application of (-)-epigallocatechin-3-gallate (EGCG), the major polyphenolic constituent in green tea, inhibits UVB-induced infiltration of leukocytes (macrophage/neutrophils), a potential source of generation of reactive oxygen species (ROS), and generation of prostaglandin (PG) metabolites. Human subjects were UVB irradiated on sun-protected skin to four times their minimal erythema dosage (MED) and skin biopsies or keratomes were obtained either 24 h or 48 h later. We found that topical application of EGCG (3 mg/2.5 cm2) before UVB (4 MED) exposure to human skin significantly blocked UVB-induced infiltration of leukocytes and reduced myeloperoxidase activity. These infiltrating leukocytes are considered to be the major source of generation of ROS. In the same set of experiments we found that topical application of EGCG before UVB exposure decreased UVB-induced erythema. In additional experiments, we found that microsomes from EGCG pretreated human skin and exposed to UVB, compared to UVB exposure alone, produced significantly reduced PG metabolites, particularly PGE2. The PG metabolites play a critical role in free radical generation and skin tumor promotion in multistage skin carcinogenesis. Careful microscopic examination of skin sections, stained with hematoxylin and eosin, under higher magnification (x400) also revealed that EGCG pretreated and UVB-exposed human skin contained fewer dead cells in the epidermis with comparison to nonpretreated UVB-exposed skin. Taken together, our data demonstrate that EGCG has the potential to block the UVB-induced infiltration of leukocytes and the subsequent generation of ROS in human skin. This may explain the possible mechanism involved in anti-inflammatory effects of green tea. We suggest that EGCG may be useful as a topical agent for protection against UVB-induced ROS-associated inflammatory dermatoses, photoaging and photocarcinogenesis. Further studies are warranted in this direction.

Similar Articles

Inhibition of carcinogenesis by tea

Author(s): Yang CS, Maliakal P, Meng X

Prostate cancer chemoprevention by green tea

Author(s): Gupta S, Ahmad N, Mukhtar H

Apoptosis-inducing activity of high molecular weight fractions of tea extracts

Author(s): Hayakawa S, Kimura T, Saeki K, Koyama Y, Aoyagi Y, et al.

Apoptosis induction by epigallocatechin gallate involves its binding to Fas

Author(s): Hayakawa S, Saeki K, Sazuka M, Suzuki Y, Shoji Y, et al.

Synthetic analogs of green tea polyphenols as proteasome inhibitors

Author(s): Smith DM, Wang Z, Kazi A, Li LH, Chan TH, et al.

The proteasome: paradigm of a self-compartmentalizing protease

Author(s): Baumeister W, Walz J, Zühl F, Seemüller E

Activation domain-dependent monoubiquitylation of Gal4 protein is essential for promoter binding in vivo

Author(s): Archer CT, Delahodde A, Gonzalez F, Johnston SA, Kodadek T

Physical and functional association of RNA polymerase II and the proteasome

Author(s): Gillette TG, Gonzalez F, Delahodde A, Johnston SA, Kodadek T

Recruitment of a 19S proteasome subcomplex to an activated promoter

Author(s): Gonzalez F, Delahodde A, Kodadek T, Johnston SA

The 19S complex of the proteasome regulates nucleotide excision repair in yeast

Author(s): Gillette TG, Huang W, Russell SJ, Reed SH, Johnston SA, et al.

Distinct functions of the ubiquitin-proteasome pathway influence nucleotide excision repair

Author(s): Gillette TG, Yu S, Zhou Z, Waters R, Johnston SA, et al.

Synergistic effect of green tea catechins on cell growth and apoptosis induction in gastric carcinoma cells

Author(s): Horie N, Hirabayashi N, Takahashi Y, Miyauchi Y, Taguchi H, et al.

Lactacystin, proteasome function, and cell fate

Author(s): Fenteany G, Schreiber SL

Apoptosis induced by proteasome inhibition in cancer cells: predominant role of the p53/PUMA pathway

Author(s): Concannon CG, Koehler BF, Reimertz C, Murphy BM, Bonner C, et al.

Caspases and apoptosis

Author(s): Salvesen GS

NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1

Author(s): Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS Jr

Tea polyphenols, their biological effects and potential molecular targets

Author(s): Chen D, Milacic V, Chen MS, Wan SB, Lam WH, et al.