Pomegranate flower: a unique traditional antidiabetic medicine with dual PPAR-alpha/-gamma activator properties

Author(s): Li Y, Qi Y, Huang TH, Yamahara J, Roufogalis BD

Abstract

PPARs are transcription factors belonging to the superfamily of nuclear receptors. PPAR-alpha is involved in the regulation of fatty acid (FA) uptake and oxidation, inflammation and vascular function, while PPAR-gamma participates in FA uptake and storage, glucose homeostasis and inflammation. The PPARs are thus major regulators of lipid and glucose metabolism. Synthetic PPAR-alpha or PPAR-gamma agonists have been widely used in the treatment of dyslipidaemia, hyperglycaemia and their complications. However, they are associated with an incidence of adverse events. Given the favourable metabolic effects of both PPAR-alpha and PPAR-gamma activators, as well as their potential to modulate vascular disease, combined PPAR-alpha/-gamma activation has recently emerged as a promising concept, leading to the development of mixed PPAR-alpha/-gamma activators. However, some major side effects associated with the synthetic dual activators have been reported. It is unclear whether this is a specific effect of the particular synthetic compounds or a class effect. To date, a medication that may combine the beneficial metabolic effects of PPAR-alpha and PPAR-gamma activation with fewer undesirable side effects has not been successfully developed. Pomegranate plant parts are used traditionally for the treatment of various disorders. However, only pomegranate flower has been prescribed in Unani and Ayurvedic medicines for the treatment of diabetes. This review provides a new understanding of the dual PPAR-alpha/-gamma activator properties of pomegranate flower in the potential treatment of diabetes and its associated complications.

Similar Articles

Triglyceride accumulation protects against fatty acid-induced lipotoxicity

Author(s): Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr, et al.

Remodeling of lipid droplets during lipolysis and growth in adipocytes

Author(s): Paar M, Jüngst C, Steiner NA, Magnes C, Sinner F, et al.

Activation of PPARγ and δ by dietary punicic acid ameliorates intestinal inflammation in mice

Author(s): Bassaganya-Riera J, DiGuardo M, Climent M, Vives C, Carbo A, et al.

Pomegranate: a fruit that ameliorates metabolic syndrome

Author(s): Medjakovic S, Jungbauer A

Antiobesity effects of wild ginseng (Panax ginseng C

Author(s): Mollah ML, Kim GS, Moon HK, Chung SK, Cheon YP, et al.

Antiobesity effect of oil extract of ginseng

Author(s): Kim HJ, Kang HJ, Seo JY, Lee CH, Kim YS, et al.

Activating effect of momordin, extract of bitter melon (Momordica Charantia L

Author(s): Sasa M, Inoue I, Shinoda Y, Takahashi S, Seo M, et al.

Hypoglycemic effects of crude polysaccharide from Purslane

Author(s): Gong F, Li F, Zhang L, Li J, Zhang Z, et al.

Effects of Portulaca oleracea L

Author(s): El-Sayed M

Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants

Author(s): P S, Zinjarde SS, Bhargava SY, Kumar AR

Cinnamon in glycaemic control: Systematic review and meta analysis

Author(s): Akilen R, Tsiami A, Devendra D, Robinson N

Effect of cinnamon on glucose control and lipid parameters

Author(s): Baker WL, Gutierrez-Williams G, White CM, Kluger J, Coleman CI

Cinnamon for diabetes mellitus

Author(s): Leach MJ, Kumar S

Postlipolytic insulin-dependent remodeling of micro lipid droplets in adipocytes

Author(s): Ariotti N, Murphy S, Hamilton NA, Wu L, Green K, et al.

Fat-specific protein 27 regulates storage of triacylglycerol

Author(s): Keller P, Petrie JT, De Rose P, Gerin I, Wright WS, et al.

Fat-specific protein 27, a novel lipid droplet protein that enhances triglyceride storage

Author(s): Puri V, Konda S, Ranjit S, Aouadi M, Chawla A, et al.

Pomegranate seed oil, a rich source of punicic acid, prevents diet-induced obesity and insulin resistance in mice

Author(s): Vroegrijk IO, van Diepen JA, van den Berg S, Westbroek I, Keizer H, et al.