Primary cultures of enzyme-isolated cells from normal and atherosclerotic human aorta

Author(s): Orekhov AN, Andreeva ER, Krushinsky AV, Smirnov VN

Abstract

A technique has been developed for isolating cells from the intimal and medial layers of the human aorta by enzymatic dispersion. After mechanical separation of intima, media and adventitia the intima and the media were dispersed by collagenase and elastase. Enzyme-isolated cells seeded in the culture with at a frequency of 30 to 50%. In the primary culture differentiated aortic cells were morphologically heterogenous. It was possible to define four main types of cells according to their shape: polygonal, elongated, asymmetrical and stellate. Polygonal and stellate cells are found only in cultures of grossly normal intima, whereas elongated and asymmetric cells are found in practically all cultures. The ratio of elongated to asymmetric cells in cultures obtained from healthy aorta and atherosclerotic plaque is more or less the same at approximately 3:1. In cultures of fatty streaks the proportion of asymmetric cells exceeds 50%. Using immunofluorescence, all four types of cell were identified as smooth muscle cells. The possible reasons for the cellular polymorphism in primary culture and the prospects of utilizing this culture for the study of cellular aspects of atherosclerosis' pathogenesis are discussed.

Similar Articles

LDL cholesterol: the lower the better

Author(s): Martin SS, Blumenthal RS, Miller M

High density lipoproteins and atherosclerosis: emerging aspects

Author(s): Sala F, Catapano AL, Norata GD

High-density lipoprotein function, dysfunction, and reverse cholesterol transport

Author(s): Fisher EA, Feig JE, Hewing B, Hazen SL, Smith JD

Targeting Innate Immunity for CV Benefit

Author(s): Moore KJ, Freeman MW

Blood serum atherogenicity associated with coronary atherosclerosis

Author(s): Orekhov AN, Tertov VV, Pokrovsky SN, Adamova IYu, Martsenyuk ON, et al.

Characteristics of low density lipoprotein isolated from circulating immune complexes

Author(s): Tertov VV, Sobenin IA, Orekhov AN, Jaakkola O, Solakivi T, et al.

Human plasma trans-sialidase causes atherogenic modification of low density lipoprotein

Author(s): Tertov VV, Kaplun VV, Sobenin IA, Boytsova EY, Bovin NV, et al.

Presence of a modified low density lipoprotein in humans

Author(s): Avogaro P, Bon GB, Cazzolato G

Autoantibodies against modified low density lipoprotein

Author(s): Orekhov AN, Tertov VV, Kabakov AE, Adamova IYu, Pokrovsky SN, et al.

Low density lipoprotein-containing circulating immune complexes and coronary atherosclerosis

Author(s): Tertov VV, Orekhov AN, Kacharava AG, Sobenin IA, Perova NV, et al.

Lipoprotein immune complexes as markers of atherosclerosis

Author(s): Orekhov AN, Kalenich OS, Tertov VV, Novikov ID

Diagnostic value of immune cholesterol as a marker for atherosclerosis

Author(s): Orekhov AN, Kalenich OS, Tertov VV, Perova NV, Novikov IyD, et al.

Diagnostic and prognostic value of low density lipoprotein-containing circulating immune complexes in atherosclerosis

Author(s): Sobenin IA, Karagodin VP, Melnichenko AC, Bobryshev YV, Orekhov AN

Pluronic block copolymers inhibit low density lipoprotein self-association

Author(s): Melnichenko AA, Aksenov DV, Myasoedova VA, Panasenko OM, Yaroslavov AA, et al.

Three-dimensional cytoarchitecture of normal and atherosclerotic intima of human aorta

Author(s): Rekhter MD, Andreeva ER, Mironov AA, Orekhov AN

Lipids in cells of atherosclerotic and uninvolved human aorta

Author(s): Orekhov AN, Tertov VV, Novikov ID, Krushinsky AV, Andreeva ER, et al.

Adult human aortic cells in primary culture: heterogeneity in shape

Author(s): Orekhov AN, Krushinsky AV, Andreeva ER, Repin VS, Smirnov VN

Cell proliferation in normal and atherosclerotic human aorta

Author(s): Orekhov AN, Kosykh VA, Repin VS, Smirnov VN

Primary culture of human aortic intima cells as a model for testing anti-atherosclerotic drugs

Author(s): Orekhov AN, Tertov VV, Kudryashov SA, Khashimov KhA, Smirnov VN

Atherogenicity of blood serum from patients with coronary heart disease

Author(s): Chazov EI, Tertov VV, Orekhov AN, Lyakishev AA, Perova NV, et al.

Antiatherosclerotic effects of calcium antagonists

Author(s): Orekhov AN, Baldenkov GN, Tertov VV, Ruda MYa, Khashimov KA, et al.

Effects of garlic on atherosclerosis

Author(s): Orekhov AN, Grünwald J

Anti-atherosclerotic therapy based on botanicals

Author(s): Orekhov AN, Sobenin IA, Korneev NV, Kirichenko TV, Myasoedova VA, et al.

The antiatherosclerotic effect of Allium sativum

Author(s): Koscielny J, Klüssendorf D, Latza R, Schmitt R, Radtke H, et al.

Pravastatin, Lipids, and Atherosclerosis in the Carotid Arteries (PLAC-II) Am J Cardiol 75: 455-459

Author(s): Crouse JR 3rd, Byington RP, Bond MG, Espeland MA, Craven TE, et al.

Kuopio Atherosclerosis Prevention Study (KAPS)

Author(s): Salonen R, Nyyssönen K, Porkkala E, Rummukainen J, Belder R, et al.

Effect of amlodipine on the progression of atherosclerosis and the occurrence of clinical events

Author(s): Pitt B, Byington RP, Furberg CD, Hunninghake DB, Mancini GB, et al.

Beneficial effects of colestipol-niacin therapy on the common carotid artery

Author(s): Blankenhorn DH, Selzer RH, Crawford DW, Barth JD, Liu CR, et al.

Coronary angiographic changes with lovastatin therapy

Author(s): Blankenhorn DH, Azen SP, Kramsch DM, Mack WJ, Cashin-Hemphill L, et al.

Carotid plaque morphologic characteristics

Author(s): Aidinian G, Weiswasser JM, Arora S, Abularrage CJ, Singh N, et al.

Thematic review series: The immune system and atherogenesis

Author(s): Daugherty A, Webb NR, Rateri DL, King VL

Evidence-based assessment of the impact of the WHI on women's health

Author(s): Burger HG, MacLennan AH, Huang KE, Castelo-Branco C