Quercetin enhances TRAIL-induced apoptosis in prostate cancer cells via increased protein stability of death receptor 5

Author(s): Jung YH, Heo J, Lee YJ, Kwon TK, Kim YH


Aims: Quercetin has been shown to enhance tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of prostate cancer cells via mechanisms that include upregulation of death receptor (DR) 5, a protein reported to play an important role in sensitizing cancer cells to apoptosis. We aimed to determine the specific mechanisms underlying quercetin-induced DR5 expression.

Main methods: Human prostate cancer cells were exposed to quercetin and TRAIL. Trypan blue assays and terminal transferase dUTP nick-end labeling (TUNEL) assays evaluated changes in TRAIL resistance after quercetin treatment, and flow cytometry examined quercetin-induced death receptor expression in DU-145 cells. Western blotting, reverse transcription-polymerase chain reaction (RT-PCR) and transiently transfection were utilized to confirm apoptotic patterns of prostate cancer cells.

Key findings: After stimulation with quercetin, DU-145 cells exhibited stronger sensitization to TRAIL. Quercetin treatment enhanced TRAIL-induced activation proteins in the caspase pathway, such as poly (ADP-ribose) polymerase (PARP), caspase-3, and caspase-9. Quercetin dose-dependently increased DR5 levels in prostate cancer cells, which was mediated by increased transcription and protein stability, but not mRNA stability. Ectopic expression of DR5 dose-dependently increased TRAIL-induced apoptosis.

Significance: Our results showed that the role of quercetin and TRAIL combination therapy may provide a novel strategy for treating prostate cancer by overcoming critical mechanisms of apoptosis resistance.

Similar Articles

Nitric oxide represses inhibitory kappaB kinase through S-nitrosylation

Author(s): Reynaert NL, Ckless K, Korn SH, Vos N, Guala AS, et al.

Signaling by distinct classes of phosphoinositide 3-kinases

Author(s): Vanhaesebroeck B, Waterfield MD

Activation of Akt/protein kinase B overcomes a G(2)/m cell cycle checkpoint induced by DNA damage

Author(s): Kandel ES, Skeen J, Majewski N, Di Cristofano A, Pandolfi PP, et al.

Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin

Author(s): Choi JA, Kim JY, Lee JY, Kang CM, Kwon HJ, et al.

Protein measurement with the Folin phenol reagent

Author(s): Lowry OH, Rosebrough NJ, Farr AL, Randall RJ

Garlic compound, diallyl disulfide induces cell cycle arrest in prostate cancer cell line PC-3

Author(s): Arunkumar A, Vijayababu MR, Srinivasan N, Aruldhas MM, Arunakaran J