Quercetin regulates insulin like growth factor signaling and induces intrinsic and extrinsic pathway mediated apoptosis in androgen independent prostate cancer cells (PC-3)

Author(s): Senthilkumar K, Elumalai P, Arunkumar R, Banudevi S, Gunadharini ND, et al.


Progression of prostate cancer is facilitated by growth factors that activate critical signaling cascades thereby promote prostate cancer cell growth, survival, and migration. To investigate the effect of quercetin on insulin-like growth factor signaling and apoptosis in androgen independent prostate cancer cells (PC-3), IGF-IR, PI-3K, p-Akt, Akt, cyclin D1, Bad, cytochrome c, PARP, caspases-9 and 10 protein levels were assessed by western blot analysis. Mitochondrial membrane potency was detected by rhodamine-123 staining. Quercetin induced caspase-3 activity assay was performed for activation of apoptosis. Further, RT-PCR was also performed for Bad, IGF-I, II, IR, and IGFBP-3 mRNA expression. Quercetin significantly increases the proapoptotic mRNA levels of Bad, IGFBP-3 and protein levels of Bad, cytochrome C, cleaved caspase-9, caspase-10, cleaved PARP and caspase-3 activity in PC-3 cells. IGF-IRβ, PI3K, p-Akt, and cyclin D1 protein expression and mRNA levels of IGF-I, II and IGF-IR were decreased significantly. Further, treatment with PI3K inhibitor (LY294002) and quercetin showed decreased p-Akt levels. Apoptosis is confirmed by loss of mitochondrial membrane potential in quercetin treated PC-3 cells. This study suggests that quercetin decreases the survival of androgen independent prostate cancer cells by modulating the expression of insulin-like growth factors (IGF) system components, signaling molecules and induces apoptosis, which could be very useful for the androgen independent prostate cancer treatment.

Similar Articles

Nitric oxide represses inhibitory kappaB kinase through S-nitrosylation

Author(s): Reynaert NL, Ckless K, Korn SH, Vos N, Guala AS, et al.

Signaling by distinct classes of phosphoinositide 3-kinases

Author(s): Vanhaesebroeck B, Waterfield MD

Activation of Akt/protein kinase B overcomes a G(2)/m cell cycle checkpoint induced by DNA damage

Author(s): Kandel ES, Skeen J, Majewski N, Di Cristofano A, Pandolfi PP, et al.

Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin

Author(s): Choi JA, Kim JY, Lee JY, Kang CM, Kwon HJ, et al.

Protein measurement with the Folin phenol reagent

Author(s): Lowry OH, Rosebrough NJ, Farr AL, Randall RJ

Garlic compound, diallyl disulfide induces cell cycle arrest in prostate cancer cell line PC-3

Author(s): Arunkumar A, Vijayababu MR, Srinivasan N, Aruldhas MM, Arunakaran J