Strongylocins, novel antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis

Author(s): Li C, Haug T, Styrvold OB, JØrgensen TØ, Stensvåg K

Abstract

Sea urchins possess an innate immune system and are regarded as a potential source for the discovery of new antimicrobial peptides (AMPs). Here we report the purification and characterization of two novel antibacterial peptides (5.6 and 5.8kDa) from coelomocyte extracts of the green sea urchin, Strongylocentrotus droebachiensis. These are the first reported AMPs isolated from sea urchins. The cDNA encoding the peptides and genomic sequences was isolated and sequenced. The two peptides (named strongylocins 1 and 2) have putative isoforms (1b and 2b), similar to two putative proteins from the purple sea urchin S. purpuratus. The native strongylocins are cationic, defensin-like peptides (cysteine-rich), but show no similarity to other known AMPs concerning the cysteine distribution pattern. Strongylocin 1 consists of 83 amino acids that include a preprosequence of 35 amino acids, whereas strongylocins 2a and 2b are composed of 89 and 90 amino acids, respectively, where 38 amino acids represent a preprosequence. No introns were found in the cloned gene of strongylocin 1b, whereas three introns and four exons were found in strongylocins 1a and 2a/b. The latter gene organization was also found in genes coding for putative strongylocins in S. purpuratus. The molecular mass difference between the native peptide and the deduced strongylocin 2 suggests that the first amino acid is bromotryptophan. The native peptides display potent activities against Gram-negative and Gram-positive bacteria.

Similar Articles

Plant defense and antimicrobial peptides

Author(s): Castro MS, Fontes W

Bacteriocins

Author(s): Riley MA, Chavan MA

Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria

Author(s): Rodríguez JM, Martínez MI, Kok J

Development of novel therapeutic drugs in humans from plant antimicrobial peptides

Author(s): da Rocha Pitta MG, da Rocha Pitta MG, Galdino SL

CAMP: a useful resource for research on antimicrobial peptides

Author(s): Thomas S, Karnik S, Barai RS, Jayaraman VK, Idicula-Thomas S

Advances in antimicrobial peptide immunobiology

Author(s): Yount NY, Bayer AS, Xiong YQ, Yeaman MR

Novel properties of antimicrobial peptides

Author(s): Kamysz W, Okroj M, Lukasiak J

Impact of LL-37 on anti-infective immunity

Author(s): Bowdish DM, Davidson DJ, Lau YE, Lee K, Scott MG, et al.

Cationic host defense (antimicrobial) peptides

Author(s): Brown KL, Hancock RE

Potential of immunomodulatory host defense peptides as novel anti-infectives

Author(s): Easton DM, Nijnik A, Mayer ML, Hancock RE

Antimicrobial peptides: general overview and clinical implications in human health and disease

Author(s): Guaní-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, Terán LM

Actinopyga lecanora Hydrolysates as Natural Antibacterial Agents

Author(s): Ghanbari R, Ebrahimpour A, Abdul-Hamid A, Ismail A, Saari N

Antimicrobial and antistaphylococcal biofilm activity from the sea urchin Paracentrotus lividus

Author(s): Schillaci D, Arizza V, Parrinello N, Di Stefano V, Fanara S, et al.

beta-Thymosins, small acidic peptides with multiple functions

Author(s): Huff T, M&uller CS, Otto AM, Netzker R, Hannappel E

Antimicrobial peptides from human platelets

Author(s): Tang YQ, Yeaman MR, Selsted ME

ß-thymosins and hemocyte homeostasis in a crustacean

Author(s): Saelee N, Noonin C, Nupan B, Junkunlo K, Phongdara A, et al.

Direct inactivation of viruses by human granulocyte defensins

Author(s): Daher KA, Selsted ME, Lehrer RI

Staphylococcus aureus biofilms: properties, regulation, and roles in human disease

Author(s): Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, et al.

Quorum sensing and DNA release in bacterial biofilms

Author(s): Spoering AL, Gilmore MS

Evolving concepts in biofilm infections

Author(s): Hall-Stoodley L, Stoodley P

Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal

Author(s): Landini P, Antoniani D, Burgess JG, Nijland R

Membrane permeabilization by multivalent anti-microbial peptides

Author(s): Pieters RJ, Arnusch CJ, Breukink E