Structual characterization of water-shield mucilage of “Junsai (Braseniaschreberi J

Author(s): Kakuta M, Misaki A

Abstract

Plant root mucilages contain powerful surfactants that will alter the interaction of soil solids with water and ions, and the rates of microbial processes. •The lipid composition of maize, lupin and wheat root mucilages was analysed by thin layer chromatography and gas chromatography-mass spectrometry. A commercially available phosphatidylcholine (lecithin), chemically similar to the phospholipid surfactants identified in the mucilages, was then used to evaluate its effects on selected soil properties. •The lipids found in the mucilages were principally phosphatidylcholines, composed mainly of saturated fatty acids, in contrast to the lipids extracted from root tissues. In soil at low tension, lecithin reduced the water content at any particular tension by as much as 10 and 50% in soil and acid-washed sand, respectively. Lecithin decreased the amount of phosphate adsorption in soil and increased the phosphate concentration in solution by 10%. The surfactant also reduced net rates of ammonium consumption and nitrate production in soil. •These experiments provide the first evidence we are aware of that plant-released surfactants will significantly modify the biophysical environment of the rhizosphere.

Similar Articles

Antioxidant and anti-inflammatory activities of quercetin 7-O-β-D-glucopyranoside from the leaves of Braseniaschreberi

Author(s): Legault J, Perron T, Mshvildadze V, Girard-Lalancette K, Perron S, et al.

Cyclohexene, diketopiperazine, lactone and phenol derivatives from the sea fan-derived fungi Nigrospora sp

Author(s): Rukachaisirikul T, Khamthong N, Sukpondma Y, Phongpaichit S, Hutadilok-Towatana N, et al.

Hypolaetin 7-glucoside from Juniperusmacropoda

Author(s): Siddiqui SA, Sen AB

Flavonol glycosides gallates from Tellimagrandiflora

Author(s): Collins FW, Bohm BA, Wilkins CK

Constituents of the leaves of WoodfordiafruticosaKurz

Author(s): Kadota S, Takamori Y, Khin N, Kikuchi T, Tanaka K, et al.

Facile synthesis of flavonoid 7-O-glycosides

Author(s): Li M, Han X, Yu B

Flavonoid galloylglucosides from the pods of Acaciafarnesiana

Author(s): Barakat HH, Souleman AM, Hussein SAM, Ibrahiem OA, Nawwar MAM

Facile discrimination of aldose enantiomers by reversed-phase HPLC

Author(s): Tanaka T, Nakashima T, Ueda T, Tomii K, Kouno I

Comparative phytochemical and morphological analyses of three Italian Primula species

Author(s): Fico G, Rodondi G, Flamini G, Passarella D, Tomé F

Identification of nobiletin, a polymethoxyflavonoid, as an enhancer of adiponectin secretion

Author(s): Kunimasa K, Kuranuki S, Matsuura N, Iwasaki N, Ikeda M, et al.

Adiponectin expression is decreased in the involved skin and sera of diffuse cutaneous scleroderma patients

Author(s): Arakawa H, Jinnin M, Muchemwa FC, Makino T, Kajihara I, et al.

Clinical status and cardiovascular risk profile of adults with a history of juvenile dermatomyositis

Author(s): Eimer MJ, Brickman WJ, Seshadri R, Ramsey-Goldman R, McPherson DD, et al.

Biochemical markers of psoriasis as a metabolic disease

Author(s): Gerkowicz A, Pietrzak A, Szepietowski JC, Radej S, Chodorowska G

Adiponectin expression in subcutaneous adipose tissue is reduced in women with cellulite

Author(s): Emanuele E, Minoretti P, Altabas K, Gaeta E, Altabas V

Decreased expression of apM1 in omental and subcutaneous adipose tissue of humans with type 2 diabetes

Author(s): Statnick MA, Beavers LS, Conner LJ, Corominola H, Johnson D, et al.