Structural and biochemical characteristics of various white adipose tissue depots

Author(s): Wronska A, Kmiec Z


It is now widely accepted that white adipose tissue (WAT) is not merely a fuel storage organ, but also a key component of metabolic homoeostatic mechanisms. Apart from its major role in lipid and glucose metabolism, adipose tissue is also involved in a wide array of other biological processes. The hormones and adipokines, as well as other biologically active agents released from fat cells, affect many physiological and pathological processes. WAT is neither uniform nor inflexible because it undergoes constant remodelling, adapting the size and number of adipocytes to changes in nutrients' availability and hormonal milieu. Fat depots from different areas of the body display distinct structural and functional properties and have disparate roles in pathology. The two major types of WAT are visceral fat, localized within the abdominal cavity and mediastinum, and subcutaneous fat in the hypodermis. Visceral obesity correlates with increased risk of insulin resistance and cardiovascular diseases, while increase of subcutaneous fat is associated with favourable plasma lipid profiles. Visceral adipocytes show higher lipogenic and lipolytic activities and produce more pro-inflammatory cytokines, while subcutaneous adipocytes are the main source of leptin and adiponectin. Moreover, adipose tissue associated with skeletal muscles (intramyocellular and intermuscular fat) and with the epicardium is believed to provide fuels for skeletal and cardiac muscle contraction. However, increased mass of either epicardial or intermuscular adipose tissue correlates with cardiovascular risk, while the presence of the intramyocellular fat is a risk factor for the development of insulin resistance. This review summarizes results of mainly human studies related to the differential characteristics of various WAT depots.

Similar Articles

Antioxidant and anti-inflammatory activities of quercetin 7-O-β-D-glucopyranoside from the leaves of Braseniaschreberi

Author(s): Legault J, Perron T, Mshvildadze V, Girard-Lalancette K, Perron S, et al.

Cyclohexene, diketopiperazine, lactone and phenol derivatives from the sea fan-derived fungi Nigrospora sp

Author(s): Rukachaisirikul T, Khamthong N, Sukpondma Y, Phongpaichit S, Hutadilok-Towatana N, et al.

Hypolaetin 7-glucoside from Juniperusmacropoda

Author(s): Siddiqui SA, Sen AB

Flavonol glycosides gallates from Tellimagrandiflora

Author(s): Collins FW, Bohm BA, Wilkins CK

Constituents of the leaves of WoodfordiafruticosaKurz

Author(s): Kadota S, Takamori Y, Khin N, Kikuchi T, Tanaka K, et al.

Facile synthesis of flavonoid 7-O-glycosides

Author(s): Li M, Han X, Yu B

Flavonoid galloylglucosides from the pods of Acaciafarnesiana

Author(s): Barakat HH, Souleman AM, Hussein SAM, Ibrahiem OA, Nawwar MAM

Facile discrimination of aldose enantiomers by reversed-phase HPLC

Author(s): Tanaka T, Nakashima T, Ueda T, Tomii K, Kouno I

Comparative phytochemical and morphological analyses of three Italian Primula species

Author(s): Fico G, Rodondi G, Flamini G, Passarella D, Tomé F

Identification of nobiletin, a polymethoxyflavonoid, as an enhancer of adiponectin secretion

Author(s): Kunimasa K, Kuranuki S, Matsuura N, Iwasaki N, Ikeda M, et al.

Adiponectin expression is decreased in the involved skin and sera of diffuse cutaneous scleroderma patients

Author(s): Arakawa H, Jinnin M, Muchemwa FC, Makino T, Kajihara I, et al.

Clinical status and cardiovascular risk profile of adults with a history of juvenile dermatomyositis

Author(s): Eimer MJ, Brickman WJ, Seshadri R, Ramsey-Goldman R, McPherson DD, et al.

Biochemical markers of psoriasis as a metabolic disease

Author(s): Gerkowicz A, Pietrzak A, Szepietowski JC, Radej S, Chodorowska G

Adiponectin expression in subcutaneous adipose tissue is reduced in women with cellulite

Author(s): Emanuele E, Minoretti P, Altabas K, Gaeta E, Altabas V

Decreased expression of apM1 in omental and subcutaneous adipose tissue of humans with type 2 diabetes

Author(s): Statnick MA, Beavers LS, Conner LJ, Corominola H, Johnson D, et al.