Author(s): Gillette TG, Huang W, Russell SJ, Reed SH, Johnston SA, et al.
Previous studies suggest that the amino-terminal ubiquitin-like (ubl) domain of Rad23 protein can recruit the proteasome for a stimulatory role during nucleotide excision repair in the yeast Saccharomyces cerevisiae. In this report, we show that the 19S regulatory complex of the yeast proteasome can affect nucleotide excision repair independently of Rad23 protein. Strains with mutations in 19S regulatory subunits (but not 20S subunits) of the proteasome promote partial recovery of nucleotide excision repair in vivo in rad23 deletion mutants, but not in other nucleotide excision repair-defective strains tested. In addition, a strain that expresses a temperature-degradable ATPase subunit of the 19S regulatory complex manifests a dramatically increased rate of nucleotide excision repair in vivo. These data indicate that the 19S regulatory complex of the 26S proteasome can negatively regulate the rate of nucleotide excision repair in yeast and suggest that Rad23 protein not only recruits the 19S regulatory complex, but also can mediate functional interactions between the 19S regulatory complex and the nucleotide excision repair machinery. The 19S regulatory complex of the yeast proteasome functions in nucleotide excision repair independent of proteolysis.
Referred From: https://www.ncbi.nlm.nih.gov/pubmed/11410533
Author(s): Koo MW, Cho CH
Author(s): Yang CS, Maliakal P, Meng X
Author(s): Gupta S, Ahmad N, Mohan RR, Husain MM, Mukhtar H
Author(s): Gupta S, Ahmad N, Mukhtar H
Author(s): Katiyar SK, Challa A, McCormick TS, Cooper KD, Mukhtar H
Author(s): Katiyar SK, Matsui MS, Elmets CA, Mukhtar H
Author(s): Yamane T, Takahashi T, Kuwata K, Oya K, Inagake M, et al.
Author(s): Saeki K, Kobayashi N, Inazawa Y, Zhang H, Nishitoh H, et al.
Author(s): Hayakawa S, Kimura T, Saeki K, Koyama Y, Aoyagi Y, et al.
Author(s): Hayakawa S, Saeki K, Sazuka M, Suzuki Y, Shoji Y, et al.
Author(s): Tanaka S, Aizawa K, Katayanagi N, Tanaka O
Author(s): Smith DM, Wang Z, Kazi A, Li LH, Chan TH, et al.
Author(s): Nam S, Smith DM, Dou QP
Author(s): Baumeister W, Walz J, Zühl F, Seemüller E
Author(s): Rocca A, Lamaze C, Subtil A, Dautry-Varsat A
Author(s): Pickering AM, Koop AL, Teoh CY, Ermak G, Grune T, et al.
Author(s): Ferdous A, Gonzalez F, Sun L, Kodadek T, Johnston SA
Author(s): Archer CT, Delahodde A, Gonzalez F, Johnston SA, Kodadek T
Author(s): Gillette TG, Gonzalez F, Delahodde A, Johnston SA, Kodadek T
Author(s): Gonzalez F, Delahodde A, Kodadek T, Johnston SA
Author(s): Gillette TG, Yu S, Zhou Z, Waters R, Johnston SA, et al.
Author(s): Reed SH, Gillette TG
Author(s): Hu X, Bryington M, Fisher AB, Liang X, Zhang X, et al.
Author(s): Horie N, Hirabayashi N, Takahashi Y, Miyauchi Y, Taguchi H, et al.
Author(s): Cheynier V
Author(s): Fenteany G, Schreiber SL
Author(s): Concannon CG, Koehler BF, Reimertz C, Murphy BM, Bonner C, et al.
Author(s): DeMartino GN
Author(s): Salvesen GS
Author(s): Wang H, Shimoji M, Yu SW, Dawson TM, Dawson VL
Author(s): Yu SW, Wang H, Dawson TM, Dawson VL
Author(s): Polyak K, Kato JY, Solomon MJ, Sherr CJ, Massague J, et al.
Author(s): Toyoshima H, Hunter T
Author(s): Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS Jr
Author(s): Lambert JD, Lee MJ, Lu H, Meng X, Hong JJ, et al.
Author(s): Lambert JD, Yang CS
Author(s): Lambert JD, Yang CS
Author(s): Chen D, Milacic V, Chen MS, Wan SB, Lam WH, et al.
Author(s): Zhang Q, Tang X, Lu Q, Zhang Z, Rao J, et al.
Author(s): Golden EB, Lam PY, Kardosh A, Gaffney KJ, Cadenas E, et al.