The detection and isolation of a novel antimicrobial peptide from the echinoderm, Cucumaria frondosa

Author(s): Beauregard KA, Truong NT, Zhang H, Lin W, Beck G


Antimicrobial peptides (AMPs) are extremely attractive candidates as therapeutic agents due to their wide spectrum of antimicrobial activity and mechanism of action, which differs from that of small-molecule antibiotics. In this study, a 6.0-kDa antimicrobial peptide from Aspergillus clavatus ES1, designated as AcAMP, was isolated by a one-step heat treatment. AcAMP was sensitive to proteolytic enzymes, stable between pH 5.0 and 10.0, and heat resistant (15 min at 100 degrees C). The acamp gene encoding AcAMP peptide was isolated by reverse-transcriptase polymerase chain reaction (RT-PCR) and cloned in pCRII-TOPO vector. Sequence analysis of the complementary DNA (cDNA) acamp gene revealed an open reading frame of 282 bp encoding a peptide of 94 amino acid residues consisting of a 21-aa signal peptide, a 22-aa pro-peptide, and a 51-aa mature peptide. The deduced amino acid sequence showed high identity with other ascomycete antifungal peptides. AcAMP belongs to the group of small, cysteine-rich, basic proteins with antimicrobial activity. In addition to its antifungal activity, AcAMP is the first fungal peptide exhibiting antibacterial activity against several Gram-positive and Gram-negative bacteria. Based on all these features, AcAMP can be considered as a promising new member of the restraint family of ascomycete antimicrobial peptides that might be used in biological control of plant diseases and also for potential applications in food preservation.

Similar Articles

Plant defense and antimicrobial peptides

Author(s): Castro MS, Fontes W


Author(s): Riley MA, Chavan MA

Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria

Author(s): Rodríguez JM, Martínez MI, Kok J

Development of novel therapeutic drugs in humans from plant antimicrobial peptides

Author(s): da Rocha Pitta MG, da Rocha Pitta MG, Galdino SL

CAMP: a useful resource for research on antimicrobial peptides

Author(s): Thomas S, Karnik S, Barai RS, Jayaraman VK, Idicula-Thomas S

Advances in antimicrobial peptide immunobiology

Author(s): Yount NY, Bayer AS, Xiong YQ, Yeaman MR

Novel properties of antimicrobial peptides

Author(s): Kamysz W, Okroj M, Lukasiak J

Impact of LL-37 on anti-infective immunity

Author(s): Bowdish DM, Davidson DJ, Lau YE, Lee K, Scott MG, et al.

Cationic host defense (antimicrobial) peptides

Author(s): Brown KL, Hancock RE

Potential of immunomodulatory host defense peptides as novel anti-infectives

Author(s): Easton DM, Nijnik A, Mayer ML, Hancock RE

Antimicrobial peptides: general overview and clinical implications in human health and disease

Author(s): Guaní-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, Terán LM

Actinopyga lecanora Hydrolysates as Natural Antibacterial Agents

Author(s): Ghanbari R, Ebrahimpour A, Abdul-Hamid A, Ismail A, Saari N

Antimicrobial and antistaphylococcal biofilm activity from the sea urchin Paracentrotus lividus

Author(s): Schillaci D, Arizza V, Parrinello N, Di Stefano V, Fanara S, et al.

beta-Thymosins, small acidic peptides with multiple functions

Author(s): Huff T, M&uller CS, Otto AM, Netzker R, Hannappel E

Antimicrobial peptides from human platelets

Author(s): Tang YQ, Yeaman MR, Selsted ME

ß-thymosins and hemocyte homeostasis in a crustacean

Author(s): Saelee N, Noonin C, Nupan B, Junkunlo K, Phongdara A, et al.

Direct inactivation of viruses by human granulocyte defensins

Author(s): Daher KA, Selsted ME, Lehrer RI

Staphylococcus aureus biofilms: properties, regulation, and roles in human disease

Author(s): Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, et al.

Quorum sensing and DNA release in bacterial biofilms

Author(s): Spoering AL, Gilmore MS

Evolving concepts in biofilm infections

Author(s): Hall-Stoodley L, Stoodley P

Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal

Author(s): Landini P, Antoniani D, Burgess JG, Nijland R

Membrane permeabilization by multivalent anti-microbial peptides

Author(s): Pieters RJ, Arnusch CJ, Breukink E