Author(s): Legendre P
Glycine is one of the most important inhibitory neurotransmitters in the spinal cord and the brainstem, and glycinergic synapses have a well-established role in the regulation of locomotor behavior. Research over the last 15 years has yielded new insights on glycine neurotransmission. Glycinergic synapses are now known not to be restricted to the spinal cord and the brainstem. Presynaptic machinery for glycine release and uptake, the structure and function of postsynaptic receptors and the factors (both pre- and postsynaptic) which control the strength of glycinergic inhibition have been extensively studied. It is now established that glycinergic synapses can be excitatory in the immature brain and that some inhibitory synapses can corelease gamma-aminobutyric acid (GABA) and glycine. Moreover, the presence of glycine transporters on glial cells and the capacity of these cells to release glycine suggest that glycine may also act as a neuromodulator. Extensive molecular studies have revealed the presence of distinct subtypes of postsynaptic glycine receptors with different functional properties. Mechanisms of glycine receptors aggregation at postsynaptic sites during development are better understood and functional implications of variation in receptor number between postsynaptic sites are partly elucidated. Mutations of glycine receptor subunits have been shown to underly some human locomotor disorders, including the startle disease. Clearly, recent work on glycine receptor channels and the synapses at which they mediate inhibitory signalling in both young and adult animals necessitates an update of our vision of glycinergic inhibitory transmission.
Referred From: https://www.ncbi.nlm.nih.gov/pubmed/11437237
Author(s): Rates SM
Author(s): Stevenson DE, Hurst RD
Author(s): Kandaswami C, Middleton E Jr
Author(s): Kandaswami C, Perkins E, Drzewiecki G, Soloniuk DS, Middleton E Jr
Author(s): Middleton E Jr, Kandaswami C, Theoharides TC
Author(s): Ibraheim ZZ, Abdel-Mageed WM, Dai H, Guo H, Zhang L, et al.
Author(s): Macho A, Blanco-Molina M, Spagliardi P, Appendino G, Bremner P, et al.
Author(s): Colman-Saizarbitoria T, Boutros P, Amesty A, Bahsas A, Mathison Y, et al.
Author(s): Zamaraeva M, Charishnikova O, Saidkhodjaev A, Isidorov V, Granosik M, et al.
Author(s): Abourashed EA, Galal AM, El-Feraly FS, Khan IA
Author(s): Hosseinzadeh H, Parvardeh S
Author(s): Abdel-Fattah AM, Matsumoto K, Watanabe H
Author(s): Houghton PJ, Zarka R, de las Heras B, Hoult JR
Author(s): Worthen DR, Ghosheh OA, Crooks PA
Author(s): Wie MB, Won MH, Lee KH, Shin JH, Lee JC, et al.
Author(s): Irie Y, Itokazu N, Anjiki N, Ishige A, Watanabe K, et al.
Author(s): Surh YJ, Park KK, Chun KS, Lee LJ, Lee E, et al.
Author(s): Ali BH, Blunden G, Tanira MO, Nemmar A
Author(s): Raafat K, Breitinger U, Mahran L, Ayoub N, Breitinger HG
Author(s): Raafat KM, Jassar H, Aboul-Ela M, El-Lakany A
Author(s): Lynch JW
Author(s): Betz H, Kuhse J, Fischer M, Schmieden V, Laube B, et al.
Author(s): Breitinger HG, Becker CM
Author(s): Lynch JW
Author(s): Becker L, von Wegerer J, Schenkel J, Zeilhofer HU, Swandulla D, et al.
Author(s): Chindo BA, Anuka JA, McNeil L, Yaro AH, Adamu SS, et al.
Author(s): Lambert DM, Poupaert JH, Maloteaux JM, Dumont P
Author(s): Bloomenthal AB, Goldwater E, Pritchett DB, Harrison NL