Tumor necrosis factor alpha-induced inflammation is increased but apoptosis is inhibited by common food additive carrageenan

Author(s): Bhattacharyya S, Dudeja PK, Tobacman JK


Tumor necrosis factor (TNF)-α, a homotrimeric, pleiotropic cytokine, is secreted in response to inflammatory stimuli in diseases such as rheumatoid arthritis and inflammatory bowel disease. TNF-α mediates both apoptosis and inflammation, stimulating an inflammatory cascade through the non-canonical pathway of NF-κB activation, leading to increased nuclear RelB and p52. In contrast, the common food additive carrageenan (CGN) stimulates inflammation through both the canonical and non-canonical pathways of NF-κB activation and utilizes the adaptor molecule BCL10 (B-cell leukemia/lymphoma 10). In a series of experiments, colonic epithelial cells and mouse embryonic fibroblasts were treated with TNF-α and carrageenan in order to simulate the possible effects of exposure to dietary CGN in the setting of a TNF-α-mediated inflammatory disease process. A marked increase in secretion of IL-8 occurred, attributable to synergistic effects on phosphorylated NF-κB-inducing kinase (NIK) in the non-canonical pathway. TNF-α induced the ubiquitination of TRAF2 (TNF receptor-associated factor 2), which interacts with NIK, and CGN induced phosphorylation of BCL10, leading to increased NIK phosphorylation. These results suggest that TNF-α and CGN in combination act to increase NIK phosphorylation, thereby increasing activation of the non-canonical pathway of NF-κB activation. In contrast, the apoptotic effects of TNF-α, including activation of caspase-8 and PARP-1 (poly(ADP-ribose) polymerase 1) fragmentation, were markedly reduced in the presence of CGN, and CGN caused reduced expression of Fas. These findings demonstrate that exposure to CGN drives TNF-α-stimulated cells toward inflammation rather than toward apoptotic cell death and suggest that CGN exposure may compromise the effectiveness of anti-TNF-α therapy.

Similar Articles

Antioxidant and anti-inflammatory activities of quercetin 7-O-β-D-glucopyranoside from the leaves of Braseniaschreberi

Author(s): Legault J, Perron T, Mshvildadze V, Girard-Lalancette K, Perron S, et al.

Cyclohexene, diketopiperazine, lactone and phenol derivatives from the sea fan-derived fungi Nigrospora sp

Author(s): Rukachaisirikul T, Khamthong N, Sukpondma Y, Phongpaichit S, Hutadilok-Towatana N, et al.

Hypolaetin 7-glucoside from Juniperusmacropoda

Author(s): Siddiqui SA, Sen AB

Flavonol glycosides gallates from Tellimagrandiflora

Author(s): Collins FW, Bohm BA, Wilkins CK

Constituents of the leaves of WoodfordiafruticosaKurz

Author(s): Kadota S, Takamori Y, Khin N, Kikuchi T, Tanaka K, et al.

Facile synthesis of flavonoid 7-O-glycosides

Author(s): Li M, Han X, Yu B

Flavonoid galloylglucosides from the pods of Acaciafarnesiana

Author(s): Barakat HH, Souleman AM, Hussein SAM, Ibrahiem OA, Nawwar MAM

Facile discrimination of aldose enantiomers by reversed-phase HPLC

Author(s): Tanaka T, Nakashima T, Ueda T, Tomii K, Kouno I

Comparative phytochemical and morphological analyses of three Italian Primula species

Author(s): Fico G, Rodondi G, Flamini G, Passarella D, Tomé F

Identification of nobiletin, a polymethoxyflavonoid, as an enhancer of adiponectin secretion

Author(s): Kunimasa K, Kuranuki S, Matsuura N, Iwasaki N, Ikeda M, et al.

Adiponectin expression is decreased in the involved skin and sera of diffuse cutaneous scleroderma patients

Author(s): Arakawa H, Jinnin M, Muchemwa FC, Makino T, Kajihara I, et al.

Clinical status and cardiovascular risk profile of adults with a history of juvenile dermatomyositis

Author(s): Eimer MJ, Brickman WJ, Seshadri R, Ramsey-Goldman R, McPherson DD, et al.

Biochemical markers of psoriasis as a metabolic disease

Author(s): Gerkowicz A, Pietrzak A, Szepietowski JC, Radej S, Chodorowska G

Adiponectin expression in subcutaneous adipose tissue is reduced in women with cellulite

Author(s): Emanuele E, Minoretti P, Altabas K, Gaeta E, Altabas V

Decreased expression of apM1 in omental and subcutaneous adipose tissue of humans with type 2 diabetes

Author(s): Statnick MA, Beavers LS, Conner LJ, Corominola H, Johnson D, et al.