Author(s): Brogden NK, Brogden KA
The concept of antimicrobial peptides (AMPs) as potent pharmaceuticals is firmly established in the literature, and most research articles on this topic conclude by stating that AMPs represent promising therapeutic agents against bacterial and fungal pathogens. Indeed, early research in this field showed that AMPs were diverse in nature, had high activities with low minimal inhibitory concentrations, had broad spectrums of activity against bacterial, fungal and viral pathogens, and could easily be manipulated to alter their specificities, reduce their cytotoxicities and increase their antimicrobial activities. Unfortunately, commercial development of these peptides, for even the simplest of applications, has been very limited. With some peptides there are obstacles with their manufacture, in vivo efficacy and in vivo retention. More recently, the focus has shifted. Contemporary research now uses a more sophisticated approach to develop AMPs that surmount many of these prior obstacles. AMP mimetics, hybrid AMPs, AMP congeners, cyclotides and stabilised AMPs, AMP conjugates and immobilised AMPs have all emerged with selective or 'targeted' antimicrobial activities, improved retention, or unique abilities that allow them to bind to medical or industrial surfaces. These groups of new peptides have creative medical and industrial application potentials to treat antibiotic-resistant bacterial infections and septic shock, to preserve food or to sanitise surfaces both in vitro and in vivo.
Referred From: https://www.ncbi.nlm.nih.gov/pubmed/21733662
Author(s): Castro MS, Fontes W
Author(s): Strominger JL
Author(s): Zasloff M
Author(s): Riley MA, Chavan MA
Author(s): Cotter PD, Hill C, Ross RP
Author(s): Rodríguez JM, Martínez MI, Kok J
Author(s): da Rocha Pitta MG, da Rocha Pitta MG, Galdino SL
Author(s): Thomas S, Karnik S, Barai RS, Jayaraman VK, Idicula-Thomas S
Author(s): Brogden KA
Author(s): Yount NY, Bayer AS, Xiong YQ, Yeaman MR
Author(s): Kamysz W, Okroj M, Lukasiak J
Author(s): Hale JD, Hancock RE
Author(s): Nicolas P
Author(s): Bowdish DM, Davidson DJ, Lau YE, Lee K, Scott MG, et al.
Author(s): Brown KL, Hancock RE
Author(s): Easton DM, Nijnik A, Mayer ML, Hancock RE
Author(s): Lai Y, Gallo RL
Author(s): Guaní-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, Terán LM
Author(s): Hancock RE, Diamond G
Author(s): Hancock RE, Brown KL, Mookherjee N
Author(s): Bals R, Wilson JM
Author(s): Beauregard KA, Truong NT, Zhang H, Lin W, Beck G
Author(s): Haug T, Kjuul AK, Styrvold OB, Sandsdalen E, Olsen AM, et al.
Author(s): Ghanbari R, Ebrahimpour A, Abdul-Hamid A, Ismail A, Saari N
Author(s): Schillaci D, Arizza V, Parrinello N, Di Stefano V, Fanara S, et al.
Author(s): Huff T, M&uller CS, Otto AM, Netzker R, Hannappel E
Author(s): Tang YQ, Yeaman MR, Selsted ME
Author(s): Safer D, Chowrashi PK
Author(s): Saelee N, Noonin C, Nupan B, Junkunlo K, Phongdara A, et al.
Author(s): Zhang FX, Shao HL, Wang JX, Zhao XF
Author(s): Li C, Haug T, Styrvold OB, JØrgensen TØ, Stensvåg K
Author(s): Selsted ME, Ouellette AJ
Author(s): Daher KA, Selsted ME, Lehrer RI
Author(s): Mandal M, Nagaraj R
Author(s): Li C, Blencke HM, Smith LC, Karp MT, Stensvåg K
Author(s): Li C, Haug T, Moe MK, Styrvold OB, Stensvåg K
Author(s): Bjorn C, HÁkansson J, Myhrman E, Sjostrand V, Haug T, et al.
Author(s): Wilson M
Author(s): Parsek MR, Singh PK
Author(s): Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, et al.
Author(s): Obst U, Schwartz T, Volkmann H
Author(s): Horswill AR, Stoodley P, Stewart PS, Parsek MR
Author(s): Spoering AL, Gilmore MS
Author(s): Huang Y, Huang J, Chen Y
Author(s): Hall-Stoodley L, Stoodley P
Author(s): Landini P, Antoniani D, Burgess JG, Nijland R
Author(s): Pieters RJ, Arnusch CJ, Breukink E
Author(s): Chan DI, Prenner EJ, Vogel HJ
Author(s): Schillaci D, Vitale M, Cusimano MG, Arizza V
Author(s): Hisamatsu K, Tsuda N, Goda S, Hatakeyama T